Oracle9i: Program with PL/SQL

Student Guide * Volume 2

40054GC11
Production 1.1
October 2001
D34005

ORACLE"

Authors

Nagavalli Pataballa
Priya Nathan

Technical Contributors

and Reviewers

AnnaAtkinson
Bryan Roberts
Caroline Pereda
Cedjas Zarco
Coley William
Danid Gabel

Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Roger Abuzal af
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Susan Dee

Publisher
Sheryl Domingue

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure
and is also protected by copyright law. Reverse engineering of the software is
prohibited. If this documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the following
legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Il (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered
trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Curriculum Map

Introduction

Course Objectives |-2

About PL/SQL 1-3

PL/SQL Environment |-4

Benefits of PL/SQL |-5

Benefits of Subprograms 1-10

Invoking Stored Procedures and Functions [-11
Summary [-12

Declaring Variables

Objectives 1-2

PL/SQL Block Structure 1-3

Executing Statements and PL/SQL Blocks 1-4
Block Types 1-5

Program Constructs 1-6

Use of Variables 1-7

Handling Variables in PL/SQL 1-8

Types of Variables 1-9

Using iSQL*Plus Variables Within PL/SQL Blocks
Types of Variables 1-11

Declaring PL/SQL Variables 1-12

Guidelines for Declaring PL/SQL Variables 1-13
Naming Rules 1-14

Variable Initialization and Keywords 1-15
Scalar Data Types 1-17

Base Scalar Data Types 1-18

Scalar Variable Declarations 1-22

The %TYPE Attribute 1-23

Declaring Variables with the % TYPE Attribute 1-24

Declaring Boolean Variables 1-25
Composite Data Types 1-26

LOB Data Type Variables 1-27

Bind Variables 1-28

Using Bind Variables 1-30

Referencing Non-PL/SQL Variables 1-31
DBMS_OUTPUT.PUT_LINE 1-32
Summary 1-33

Practice 1 Overview 1-35

1-10

2 Writing Executable Statements
Objectives 2-2
PL/SQL Block Syntax and Guidelines 2-3
Identifiers 2-5
PL/SQL Block Syntax and Guidelines 2-6
Commenting Code 2-7
SQL Functions in PL/SQL 2-8
SQL Functions in PL/SQL: Examples 2-9
Data Type Conversion 2-10
Nested Blocks and Variable Scope 2-13
Identifier Scope 2-15
Quialify an Identifier 2-16
Determining Variable Scope 2-17
Operators in PL/SQL 2-18
Programming Guidelines 2-20
Indenting Code 2-21
Summary 2-22
Practice 2 Overview 2-23

3 Interacting with the Oracle Server
Objectives 3-2
SQL Statements in PL/SQL 3-3
SELECT Statements in PL/SQL 3-4
Retrieving Data in PL/SQL 3-7
Naming Conventions 3-9
Manipulating Data Using PL/SQL 3-10
Inserting Data 3-11
Updating Data 3-12
Deleting Data 3-13
Merging Rows 3-14
Naming Conventions 3-16
SQL Cursor 3-18
SQL Cursor Attributes 3-19
Transaction Control Statements 3-21
Summary 3-22
Practice 3 Overview 3-24

4 Writing Control Structures
Objectives 4-2
Controlling PL/SQL Flow of Execution 4-3
IF Statements 4-4
Simple IF Statements 4-5
Compound IF Statements 4-6
IF-THEN-ELSE Statement Execution Flow 4-7
IF-THEN-ELSE Statements 4-8
IF-THEN-ELSIF Statement Execution Flow 4-9
IF-THEN-ELSIF Statements 4-11
CASE Expressions 4-12
CASE Expressions: Example 4-13
Handling Nulls 4-15
Logic Tables 4-16
Boolean Conditions 4-17
Iterative Control: LOOP Statements 4-18
Basic Loops 4-19
WHILE Loops 4-21
FOR Loops 4-23
Guidelines While Using Loops 4-26
Nested Loops and Labels 4-27
Summary 4-29
Practice 4 Overview 4-30

5 Working with Composite Data Types
Objectives 5-2
Composite Data Types 5-3
PL/SQL Records 5-4
Creating a PL/SQL Record 5-5
PL/SQL Record Structure 5-7
The %ROWTYPE Attribute 5-8
Advantages of Using %ROWTYPE 5-10
The %ROWTYPE Attribute 5-11
INDEX BY Tables 5-13
Creating an INDEX BY Table 5-14
INDEX BY Table Structure 5-15
Creating an INDEX BY Table 5-16
Using INDEX BY Table Methods 5-17
INDEX BY Table of Records 5-18
Example of INDEX BY Table of Records 5-19
Summary 5-20
Practice 5 Overview 5-21

6 Writing Explicit Cursors
Objectives 6-2
About Cursors 6-3
Explicit Cursor Functions 6-4
Controlling Explicit Cursors 6-5
Declaring the Cursor 6-9
Opening the Cursor 6-11
Fetching Data from the Cursor 6-12
Closing the Cursor 6-14
Explicit Cursor Attributes 6-15
The %ISOPEN Attribute 6-16
Controlling Multiple Fetches 6-17
The %NOTFOUND and %ROWCOUNT Attributes 6-18
Example 6-20
Cursors and Records 6-21
Cursor FOR Loops 6-22
Cursor FOR Loops Using Subqueries 6-24
Summary 6-26
Practice 6 Overview 6-27

7 Advanced Explicit Cursor Concepts
Objectives 7-2
Cursors with Parameters 7-3
The FOR UPDATE Clause 7-5
The WHERE CURRENT OF Clause 7-7
Cursors with Subqueries 7-9
Summary 7-10
Practice 7 Overview 7-11

8 Handling Exceptions
Objectives 8-2
Handling Exceptions with PL/SQL 8-3
Handling Exceptions 8-4
Exception Types 8-5
Trapping Exceptions 8-6
Trapping Exceptions Guidelines 8-7
Trapping Predefined Oracle Server Errors 8-8
Predefined Exceptions 8-11
Trapping Nonpredefined Oracle Server Errors 8-12
Nonpredefined Error 8-13
Functions for Trapping Exceptions 8-14
Trapping User-Defined Exceptions 8-16
User-Defined Exceptions 8-17

Vi

10

Calling Environments 8-18

Propagating Exceptions 8-19

The RAISE_APPLICATION_ERROR Procedure 8-20
RAISE_APPLICATION_ERROR 8-22

Summary 8-23

Practice 8 Overview 8-24

Creating Procedures

Objectives 9-2

PL/SQL Program Constructs 9-4

Overview of Subprograms 9-5

Block Structure for Anonymous PL/SQL Blocks 9-6
Block Structure for PL/SQL Subprograms 9-7
PL/SQL Subprograms 9-8

Benefits of Subprograms 9-9

Developing Subprograms by Using iSQL*Plus 9-10
Invoking Stored Procedures and Functions 9-11
What Is a Procedure? 9-12

Syntax for Creating Procedures 9-13

Developing Procedures 9-14

Formal Versus Actual Parameters 9-15

Procedural Parameter Modes 9-16

Creating Procedures with Parameters 9-17

IN Parameters: Example 9-18

OUT Parameters: Example 9-19

Viewing OUT Parameters 9-21

IN OUT Parameters 9-22

Viewing IN OUT Parameters 9-23

Methods for Passing Parameters 9-24

DEFAULT Option for Parameters 9-25

Examples of Passing Parameters 9-26

Declaring Subprograms 9-27

Invoking a Procedure from an Anonymous PL/SQL Block 9-28
Invoking a Procedure from Another Procedure 9-29
Handled Exceptions 9-30

Unhandled Exceptions 9-32

Removing Procedures 9-34

Summary 9-35

Practice 9 Overview 9-37

Creating Functions
Objectives 10-2
Overview of Stored Functions 10-3

vii

11

12

Syntax for Creating Functions 10-4

Creating a Function 10-5

Creating a Stored Function by Using iSQL*Plus 10-6

Creating a Stored Function by Using iSQL*Plus: Example 10-7
Executing Functions 10-8

Executing Functions: Example 10-9

Advantages of User-Defined Functions in SQL Expressions 10-10
Invoking Functions in SQL Expressions: Example 10-11
Locations to Call User-Defined Functions 10-12

Restrictions on Calling Functions from SQL Expressions 10-13
Restrictions on Calling from SQL 10-15

Removing Functions 10-16

Procedure or Function? 10-17

Comparing Procedures and Functions 10-18

Benefits of Stored Procedures and Functions 10-19

Summary 10-20

Practice 10 Overview 10-21

Managing Subprograms

Objectives 11-2

Required Privileges 11-3

Granting Access to Data 11-4

Using Invoker's-Rights 11-5

Managing Stored PL/SQL Objects 11-6
USER_OBJECTS 11-7

List All Procedures and Functions 11-8
USER_SOURCE Data Dictionary View 11-9

List the Code of Procedures and Functions 11-10
USER_ERRORS 11-11

Detecting Compilation Errors: Example 11-12

List Compilation Errors by Using USER_ERRORS 11-13
List Compilation Errors by Using SHOW ERRORS 11-14
ESCRIBE in iSQL*Plus 11-15

Debugging PL/SQL Program Units 11-16

Summary 11-17

Practice 11 Overview 11-19

Creating Packages

Objectives 12-2

Overview of Packages 12-3
Components of a Package 12-4
Referencing Package Objects 12-5
Developing a Package 12-6

viii

13

14

Creating the Package Specification 12-8
Declaring Public Constructs 12-9

Creating a Package Specification: Example 12-10
Creating the Package Body 12-11

Public and Private Constructs 12-12

Creating a Package Body: Example 12-13
Invoking Package Constructs 12-15

Declaring a Bodiless Package 12-17
Referencing a Public Variable from a Stand-Alone Procedure 12-18
Removing Packages 12-19

Guidelines for Developing Packages 12-20
Advantages of Packages 12-21

Summary 12-23

Practice 12 Overview 12-26

More Package Concepts

Objectives 13-2

Overloading 13-3

Overloading: Example 13-5

Using Forward Declarations 13-8

Creating a One-Time-Only Procedure 13-10

Restrictions on Package Functions Used in SQL 13-11
User Defined Package: taxes_pack 13-12

Invoking a User-Defined Package Function from a SQL Statement 13-13
Persistent State of Package Variables: Example 13-14
Persistent State of Package Variables 13-15

Controlling the Persistent State of a Package Cursor 13-18
Executing PACK_CUR 13-20

PL/SQL Tables and Records in Packages 13-21

Summary 13-22

Practice 13 Overview 13-23

Oracle Supplied Packages

Objectives 14-2

Using Supplied Packages 14-3

Using Native Dynamic SQL 14-4

Execution Flow 14-5

Using the DBMS_SQL Package 14-6

Using DBMS_SQL 14-8

Using the EXECUTE IMMEDIATE Statement 14-9
Dynamic SQL Using EXECUTE IMMEDIATE 14-11
Using the DBMS_DDL Package 14-12

Using DBMS_JOB for Scheduling 14-13

iX

15

DBMS_JOB Subprograms 14-14

Submitting Jobs 14-15

Changing Job Characteristics 14-17

Running, Removing, and Breaking Jobs 14-18
Viewing Information on Submitted Jobs 14-19

Using the DBMS_OUTPUT Package 14-20
Interacting with Operating System Files 14-21

What Is the UTL_FILE Package? 14-22

File Processing Using the UTL_FILE Package 14-23
UTL_FILE Procedures and Functions 14-24
Exceptions Specific to the UTL_FILE Package 14-25
The FOPEN and IS_OPEN Functions 14-26

Using UTL_FILE 14-27

The UTL_HTTP Package 14-29

Using the UTL_HTTP Package 14-30

Using the UTL_TCP Package 14-31
Oracle-Supplied Packages 14-32

Summary 14-37

Practice 14 Overview 14-38

Manipulating Large Objects

Objectives 15-2

What Is a LOB? 15-3

Contrasting LONG and LOB Data Types 15-4
Anatomy of a LOB 15-5

Internal LOBs 15-6

Managing Internal LOBs 15-7

What Are BFILEs? 15-8

Securing BFILEs 15-9

A New Database Object: DIRECTORY 15-10
Guidelines for Creating DIRECTORY Objects 15-11
Managing BFILEs 15-12

Preparing to Use BFILEs 15-13

The BFILENAME Function 15-14

Loading BFILEs 15-15

Migrating from LONG to LOB 15-17

The DBMS_LOB Package 15-19
DBMS_LOB.READ and DBMS_LOB.WRITE 15-22
Adding LOB Columns to a Table 15-23

Populating LOB Columns 15-24

Updating LOB by Using SQL 15-26

Updating LOB by Using DBMS_LOB in PL/SQL 15-27
Selecting CLOB Values by Using SQL 15-28

16

17

Selecting CLOB Values by Using DBMS LOB 15-29
Selecting CLOB Values in PL/SQL 15-30
Removing LOBs 15-31

Temporary LOBs 15-32

Creating a Temporary LOB 15-33
Summary 15-34

Practice 15 Overview 15-35

Creating Database Triggers

Objectives 16-2

Types of Triggers 16-3

Guidelines for Designing Triggers 16-4

Database Trigger: Example 16-5

Creating DML Triggers 16-6

DML Trigger Components 16-7

Firing Sequence 16-11

Syntax for Creating DML Statement Triggers 16-13

Creating DML Statement Triggers 16-14

Testing SECURE_EMP 16-15

Using Conditional Predicates 16-16

Creating a DML Row Trigger 16-17

Creating DML Row Triggers 16-18

Using OLD and NEW Qualifiers 16-19

Using OLD and NEW Qualifiers: Example Using Audit Emp_Table 16-20
Restricting a Row Trigger 16-21

INSTEAD OF Triggers 16-22

Creating an INSTEAD OF Trigger 16-23

Differentiating Between Database Triggers and Stored Procedures 16-28

Differentiating Between Database Triggers and Form Builder Triggers 16-29

Managing Triggers 16-30

DROP TRIGGER Syntax 16-31

Trigger Test Cases 16-32

Trigger Execution Model and Constraint Checking 16-33

Trigger Execution Model and Constraint Checking: Example 16-34

A Sample Demonstration for Triggers Using Package Constructs 16-35
After Row and After Statement Triggers 16-36

Demonstration: VAR_PACK Package Specification 16-37

Summary 16-40

Practice 16 Overview 16-41

More Trigger Concepts
Objectives 17-2
Creating Database Triggers 17-3

Xi

18

Creating Triggers on DDL Statements 17-4
Creating Triggers on System Events 17-5

LOGON and LOGOFF Trigger Example 17-6
CALL Statements 17-7

Reading Data from a Mutating Table 17-8
Mutating Table: Example 17-9

Implementing Triggers 17-11

Controlling Security Within the Server 17-12
Controlling Security with a Database Trigger 17-13
Using the Server Facility to Audit Data Operations 17-14
Auditing by Using a Trigger 17-15

Enforcing Data Integrity Within the Server 17-16
Protecting Data Integrity with a Trigger 17-17
Enforcing Referential Integrity Within the Server 17-18
Protecting Referential Integrity with a Trigger 17-19
Replicating a Table Within the Server 17-20
Replicating a Table with a Trigger 17-21
Computing Derived Data Within the Server 17-22
Computing Derived Values with a Trigger 17-23
Logging Events with a Trigger 17-24

Benefits of Database Triggers 17-26

Managing Triggers 17-27

Viewing Trigger Information 17-28

Using USER_TRIGGERS 17-29

Summary 17-31

Practice 17 Overview 17-32

Managing Dependencies

Objectives 18-2

Understanding Dependencies 18-3

Dependencies 18-4

Local Dependencies 18-5

A Scenario of Local Dependencies 18-7

Displaying Direct Dependencies by Using USER_DEPENDENCIES 18-8
Displaying Direct and Indirect Dependencies 18-9
Displaying Dependencies 18-10

Another Scenario of Local Dependencies 18-11

A Scenario of Local Naming Dependencies 18-12
Understanding Remote Dependencies 18-13
Concepts of Remote Dependencies 18-15
REMOTE_DEPENDENCIES_MODE Parameter 18-16
Remote Dependencies and Time Stamp Mode 18-17

Xii

0O w>

Remote Procedure B Compiles at 8:00 a.m. 18-19
Local Procedure A Compiles at 9:00 a.m. 18-20
Execute Procedure A 18-21

Remote Procedure B Recompiled at 11:00 a.m. 18-22
Signature Mode 18-24

Recompiling a PL/SQL Program Unit 18-25
Unsuccessful Recompilation 18-26

Successful Recompilation 18-27

Recompilation of Procedures 18-28

Packages and Dependencies 18-29

Summary 18-31

Practice 18 Overview 18-32

Practice Solutions

Table Descriptions and Data

Creating Program Units by Using Procedure Builder
REF Cursors

Index

Additional Practices

Additional Practice Solutions

Additional Practices: Table Descriptions and Data

Xiii

Xiv

Creating Packages

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Describe packages and list their possible
components

* Create a package to group together related
variables, cursors, constants, exceptions,
procedures, and functions

®* Designate a package construct as either public or
private

* Invoke a package construct
* Describe ause for abodiless package

12-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson you learn what a package is and what its components are. Y ou also learn how to create
and use packages.

Oracle9i: Program with PL/SQL 12-2

Overview of Packages

Packages:
®* Group logically related PL/SQL types, items, and
subprograms

* Consist of two parts:
— Specification
— Body
® Cannot be invoked, parameterized, or nested

* Allow the Oracle server to read multiple objects
into memory at once

12-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Packages Overview

Packages bundle related PL/SQL types, items, and subprograms into one container. For example, a
Human Resources package can contain hiring and firing procedures, commission and bonus functions,
and tax exemption variables.

A package usually has a specification and a body, stored separately in the database.

The specification is the interface to your applications. It declares the types, variables, constants,
exceptions, cursors, and subprograms available for use. The package specification may also include
PRAGM As, which are directives to the compiler.

The body fully defines cursors and subprograms, and so implements the specification.

The package itself cannot be called, parameterized, or nested. Still, the format of a packageis similar to
that of a subprogram. Once written and compiled, the contents can be shared by many applications.

When you call a packaged PL/SQL construct for the first time, the whole packageis loaded into
memory. Thus, later calls to constructs in the same package require no disk input/output (1/0).

Oracle9i: Program with PL/SQL 12-3

Components of a Package
[|
4 N
Public variable
Package
specification Procedu_re A Public procedure
declaration
- | | J
/ Private variable \
Pro_cgt_jure B Private procedure
Package definition
body
Pro_cgt_jure A Public procedure
definition
Local variable
. | I | o
12-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Package Development

Y ou create a package in two parts: first the package specification, and then the package body. Public
package constructs are those that are declared in the package specification and defined in the package
body. Private package constructs are those that are defined solely within the package body.

Scope of the Construct Description Placement within the Package
Public Can be referenced from any Declared within the package
Oracle server environment specification and may be defined
within the package body
Private Can be referenced only by Declared and defined within the
other constructs which are package body

part of the same package

Note: The Oracle server stores the specification and body of a package separatdly in the database. This
enables you to change the definition of a program construct in the package body without causing the
Oracle server to invalidate other schema objects that call or reference the program construct.

Oracle9i: Program with PL/SQL 12-4

Referencing Package Objects

—>>
Package

specification

Procedure A
declaration

Procedure B
body A
Procedure A
definition
12-5 Copyright © Oracle Corporation, 2001. All rights reserved.
Package Development (continued)

Visibility of the Construct Description

Local A variable defined within a subprogram that is not
visible to external users.

Private (local to the package) variable: You can
define variables in a package body. These variables
can be accessed only by other objects in the same
package. They are not visible to any subprograms or
objects outside of the package.

Global A variable or subprogram that can be referenced
(and changed) outside the package and is visible to
external users. Global package items must be
declared in the package specification.

Oracle9i: Program with PL/SQL 12-5

Developing a Package
{ Editor

Code }@
ISQL*Plus
[Load and runthefile. sql]

{

4 N
Oracle \ Source code \

P code

12-6 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Develop a Package
1. Writethe syntax: Enter the code in atext editor and saveit asa SQL script file.

2. Compilethe code: Run the SQL script file to generate and compile the source code. The source
code is compiled into P code.

Oracle9i: Program with PL/SQL 12-6

Developing a Package

® Saving the text of the CREATE PACKAGE statement
in two different SQL files facilitates later
modifications to the package.

®* A package specification can exist without a
package body, but a package body cannot exist
without a package specification.

12-7 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Develop a Package

There are three basic steps to devel oping a package, similar to those steps that are used to develop
a stand-alone procedure.

1. Writethetext of the CREATE PACKAGE statement within a SQL script file to create the package

specification and run the script file. The source code is compiled into P code and is stored within
the data dictionary.

2. Writethetext of the CREATE PACKAGE BODY statement within a SQL script file to create the
package body and run the script file.
The source codeis compiled into P code and is also stored within the data dictionary.

3. Invokeany public construct within the package from an Oracle server environment.

Oracle9i: Program with PL/SQL 12-7

Creating the Package Specification

Syntax:

CREATE [OR REPLACE] PACKACE package_nane
I S| AS
public type and item decl arations
subpr ogram speci fi cations
END package_nane;

* The REPLACE option drops and recreates the
package specification.

®* Variables declared in the package specification are
initialized to NULL by default.

* All the constructs declared in a package
specification are visible to users who are granted
privileges on the package.

12-8 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Package Specification
To create packages, you declare all public constructs within the package specification.
» Specify the REPLACE option when the package specification already exists.

» Initialize a variable with a constant value or formula within the declaration, if required; otherwise,
the variableisinitialized implicitly to NULL.

Syntax Definition

Parameter Description
package_name Name the package
public type and Declare variables, constants, cursors, exceptions, or types

item decl arations

subprogram Declare the PL/SQL subprograms
specifications

Oracle9i: Program with PL/SQL 12-8

Declaring Public Constructs

COVMM_PACKACE package
I I

4 @ N

G _Cow

Package

specification RESET COWM
procedure @
declaration

12-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a Package Specification
Intheslide, G_COMMis apublic (global) variable, and RESET _COWMisa public procedure.

In the package specification, you declare public variables, public procedures, and public functions.

The public procedures or functions are routines that can be invoked repeatedly by other constructsin
the same package or from outside the package.

Oracle9i: Program with PL/SQL 12-9

Creating a Package Specification:
Example

CREATE OR REPLACE PACKACE comm package IS
g_comm NUMBER := 0.10; ~--initialized to 0.10
PROCEDURE reset _comm
(p_comm IN NUMBER);

END comm package;

/

Package created.

e G _COWIis a global variable and is initialized to 0.10.

* RESET COWis a public procedure that is
implemented in the package body.

‘ 12-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Package Specification for COMM_PACKAGE
In the slide, the variable G_COMMand the procedure RESET _COMMare public constructs.

Oracle9i: Program with PL/SQL 12-10

Creating the Package Body

Syntax:

CREATE [OR REPLACE] PACKAGE BODY package_nane
I S| AS

private type and item decl arations

subpr ogr am bodi es
END package_nane;

* The REPLACE option drops and recreates the
package body.

* |dentifiers defined only in the package body are
private constructs. These are not visible outside
the package body.

* All private constructs must be declared before
they are used in the public constructs.

‘ 12-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating the Package Body
To create packages, define all public and private constructs within the package body.
» Specify the REPLACE option when the package body already exists.

e The order in which subprograms are defined within the package body is important: you must
declare a variable before another variable or subprogram can refer to it, and you must declare or
define private subprograms before calling them from other subprograms. It is quite common in the
package body to see all private variables and subprograms defined first and the public
subprograms defined last.

Syntax Definition

Defineall public and private procedures and functions in the package body.

Parameter Description
package_name Is the name of the package
private type and Declares variables, constants, cursors, exceptions, or types

item decl arati ons

subprogram bodi es | Definesthe PL/SQL subprograms, public and private

Oracle9i: Program with PL/SQL 12-11

Public and Private Constructs

COVMM_PACKACE package

4 N
G_COW @
Package
specification RESET _COWM
procedure declaration @
o | | /
4)
VAL| DATE_COWM
function definition @
Package A
body
RESET _COWM @
procedure definition
- J

‘ 12-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Create a Package Body Example
In the slide on this page:

e 1lisapublic (global) variable
e 2isapublic procedure
» 3isaprivatefunction

Y ou can define a private procedure or function to modularize and clarify the code of public procedures
and functions.

Note: Inthedide, the private function is shown above the public procedure. When you are coding the
package body, the definition of the private function has to be above the definition of the public
procedure.

Only subprograms and cursors declarations without body in a package specification have an underlying
implementation in the package body. So if a specification declares only types, constants, variables,
exceptions, and call specifications, the package body is unnecessary. However, the body can still be used
toinitialize items declared in the package specification.

Oracle9i: Program with PL/SQL 12-12

Creating a Package Body: Example

comm pack. sql

CREATE OR REPLACE PACKACE BODY conmm package
IS
FUNCTI ON val i dat e_conm (p_conm | N NUMBER)
RETURN BOOLEAN

IS
V_nmax_comm NUVBER,;
BEG N
SELECT MAX(conmi ssi on_pct)
I NTO V_nmax_comm
FROM enpl oyees;

I F p_comm > v_max_conm THEN RETURN(FALSE) ;
ELSE RETURN(TRUE);
END | F;

END val i dat e_conm

‘ 12-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Package Body for COMM PACKAGE

Define a function to validate the commission. The commission may not be greater than the highest
commission among all existing employees.

Oracle9i: Program with PL/SQL 12-13

Creating a Package Body: Example

comm pack. sql

PROCEDURE reset_conm (p_conm | N NUVBER)

IS
BEG N
I F validate_commp_comm
THEN g_comm =p_comm --reset global variable
ELSE
RAI SE_APPLI CATI ON_ERROR(- 20210, ' I nval id conm ssion');
END | F;

END reset _conm
END comm package;
/

Package body created.

‘ 12-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Package Body for COMM_PACKAGE (continued)
Define a procedure that enables you to reset and validate the prevailing commission.

Oracle9i: Program with PL/SQL 12-14

Invoking Package Constructs

Example 1: Invoke a function from a procedure within
the same package.

CREATE OR REPLACE PACKACE BODY conm package IS

PROCEDURE r eset _comm
(p_comm I N NUMBER)

IS

BEG N
| F|val i dat e_com{ p_conm

THEN g_comnm : = p_conmm

ELSE
RAI SE_APPLI CATI ON_ERROR
(-20210, 'lInvalid comm ssion');
END | F;

END reset conm
END comm package;

‘ 12-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Package Constructs

After the packageis stored in the database, you can invoke a package construct within the package or
from outside the package, depending on whether the construct is private or public.

When you invoke a package procedure or function from within the same package, you do not need to
qualify its name.

Example 1

Call the VALI DATE_COWfunction from the RESET _COVM procedure. Both subprograms are in the
COW_PACKACE package.

Oracle9i: Program with PL/SQL 12-15

Invoking Package Constructs

Example 2: Invoke a package procedure from iSQL*Plus.

EXECUTE comm package. reset _com 0. 15)

Example 3: Invoke a package procedure in a different
schema.

EXECUTE scott.comm package. reset _com0. 15)

Example 4: Invoke a package procedure in a remote
database.

EXECUTE comm package. r eset _comm@ay(0. 15)

‘ 12-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Package Constructs (continued)

When you invoke a package procedure or function from outside the package, you must qualify its
name with the name of the package.

Example 2

Call the RESET _COVMprocedure from i SQL*Plus, making the prevailing commission 0.15 for the
user session.

Example 3

Call the RESET _COWMprocedurethat is located in the SCOTT schema from i SQL*Plus, making the
prevailing commission 0.15 for the user session.

Example 4

Call the RESET _COVMprocedure that is located in a remote database that is determined by the
database link named NY from iSQL*Plus, making the prevailing commission 0.15 for the user session.

Adhere to normal naming conventions for invoking a procedure in a different schema, or in a different
database on another node.

Oracle9i: Program with PL/SQL 12-16

Declaring a Bodiless Package

CREATE OR REPLACE PACKACE gl obal _consts IS
mle 2 kilo CONSTANT NUMBER : = 1.6093;
kilo_2 nmile CONSTANT NUMBER : = 0.6214;
yard_2_ rmneter CONSTANT NUMBER : = 0.9144;
nmeter_2 yard CONSTANT NUMBER := 1.0936;

END gl obal _consts;

/

EXECUTE DBMS_OUTPUT. PUT_LINE(' 20 nmiles = ']|]|20*

gl obal _consts.mle_2 kilo|]|' km)

Package created.
20 miles = 32,186 km
PLIEQL procedure successfully completed.

‘ 12-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring a Bodiless Package

Y ou can declare public (global) variables that exist for the duration of the user session. You can
create a package specification that does not need a package body. As discussed earlier in this
lesson, if a specification declares only types, constants, variables, exceptions, and call
specifications, the package body is unnecessary.

Example

In the example in the dide, a package specification containing several conversion rates is defined.
All the global identifiers are declared as constants.

A package body is not required to support this package specification because implementation
details are not required for any of the constructs of the package specification.

Oracle9i: Program with PL/SQL 12-17

Referencing a Public Variable from
a Stand-Alone Procedure

Example:

CREATE OR REPLACE PROCEDURE neter_to_yard
(p_nmeter I N NUMBER, p_yard OUT NUVBER)

IS
BEG N

p_yard := p_neter * global _consts.neter_2_yard,
END neter_to_yard;
/
VARI ABLE yard NUMBER
EXECUTE neter_to_yard (1, :yard)
PRI NT yard

Procedure created.
PLIZQL procedure successfiully completed.

| YARD
| 1.0936

‘ 12-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Usethe METER_TO_YARD procedureto convert meters to yards, using the conversion rate packaged in
GLOBAL_CONSTS.

When you reference a variable, cursor, constant, or exception from outside the package, you must
qualify its name with the name of the package.

Oracle9i: Program with PL/SQL 12-18

Removing Packages

To remove the package specification and the body,
use the following syntax:

‘DRCP PACKACE package_nare; ‘

To remove the package body, use the following syntax:

‘DRCP PACKACGE BODY package_nane; ‘

‘ 12-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Package

When a package is no longer required, you can use a SQL statement in iSQL*Plusto drop it. A
package has two parts, so you can drop the whole package or just the package body and retain the
package specification.

Oracle9i: Program with PL/SQL 12-19

Guidelines for Developing Packages

®* Construct packages for general use.
* Define the package specification before the body.

* The package specification should contain only
those constructs that you want to be public.

* Placeitems in the declaration part of the package
body when you must maintain them throughout
a session or across transactions.

®* Changes to the package specification require
recompilation of each referencing subprogram.

* The package specification should contain as few
constructs as possible.

‘ 12-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Writing Packages

Keep your packages as general as possible so that they can be reused in future applications. Also, avoid
writing packages that duplicate features provided by the Oracle server.

Package specifications reflect the design of your application, so define them before defining the package
bodies.

The package specification should contain only those constructs that must be visible to users of the
package. That way other deve opers cannot misuse the package by basing code on irrd evant details.

Placeitems in the declaration part of the package body when you must maintain them throughout a
session or across transactions. For example, declare a variable called NUMBER EMPLOYED as a private
variable, if each call to a procedure that uses the variable needs to be maintained. When declared asa
global variable in the package specification, the value of that global variable getsinitialized in a session
the first time a construct from the package is invoked.

Changes to the package body do not require recompilation of dependent constructs, whereas changes to
the package specification require recompilation of every stored subprogram that references the package.
To reduce the need for recompiling when code is changed, place as few constructs as possiblein a
package specification.

Oracle9i: Program with PL/SQL 12-20

Advantages of Packages

®* Modularity: Encapsulate related constructs.

* Easier application design: Code and compile
specification and body separately.

* Hiding information:

— Only the declarations in the package
specification are visible and accessible to
applications.

— Private constructs in the package body are
hidden and inaccessible.

— All coding is hidden in the package body.

‘ 12-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Using Packages

Packages provide an alternative to creating procedures and functions as stand-al one schema objects, and
they offer several benefits.

Modularity

Y ou encapsulate logically related programming structures in a named module. Each packageis easy to
understand, and the interface between packages is simple, clear, and well defined.

Easier Application Design

All you need initially is the interface information in the package specification. You can code and
compile a specification without its body. Then stored subprograms that reference the package can
compile as well. You need not define the package body fully until you are ready to complete the
application.

Hiding I nformation

Y ou can decide which constructs are public (visible and accessible) or private (hidden and inaccessible).
Only the declarations in the package specification are visible and accessibl e to applications. The package
body hides the definition of the private constructs so that only the package is affected (not your
application or any calling programs) if the definition changes. This enables you to change the
implementation without having to recompile calling programs. Also, by hiding implementation details
from users, you protect theintegrity of the package.

Oracle9i: Program with PL/SQL 12-21

Advantages of Packages

* Added functionality: Persistency of variables
and cursors

* Better performance:

— The entire package is loaded into memory
when the package is first referenced.

— There is only one copy in memory for all users.
— The dependency hierarchy is simplified.

®* Overloading: Multiple subprograms of the
same name

‘ 12-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Using Packages (continued)
Added Functionality

Packaged public variables and cursors persist for the duration of a session. Thus, they can be shared by
all subprograms that execute in the environment. They also enable you to maintain data across
transactions without having to storeit in the database. Private constructs also persist for the duration of
the session, but can only be accessed within the package.

Better Performance

When you call a packaged subprogram the first time, the entire package is loaded into memory. This
way, later calls to related subprograms in the package require no further disk 1/0. Packaged
subprograms also stop cascading dependencies and so avoid unnecessary compilation.

Overloading

With packages you can overload procedures and functions, which means you can create multiple
subprograms with the same name in the same package, each taking parameters of different number or
datatype.

Oracle9i: Program with PL/SQL 12-22

Summary

In this lesson, you should have learned how to:

®* Improve organization, management, security, and
performance by using packages

® Group related procedures and functions together
in a package

* Change a package body without affecting a
package specification

®* Grant security access to the entire package

‘ 12-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
Y ou group related procedures and function together into a package. Packages improve organization,
management, security, and performance.
A package consists of package specification and a package body. Y ou can change a package body
without affecting its package specification.

Oracle9i: Program with PL/SQL 12-23

Summary

In this lesson, you should have learned how to:
* Hide the source code from users

®* |Load the entire package into memory on the
first call

* Reduce disk access for subsequent calls
®* Provide identifiers for the user session

‘ 12-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

Packages enable you to hide source code from users. When you invoke a package for thefirst time, the
entire package is loaded into memory. This reduces the disk access for subsequent calls.

Oracle9i: Program with PL/SQL 12-24

Summary

Command Task

CREATE [OR REPLACE] PACKACE |Create (or modify) an existing
package specification
CREATE [OR REPLACE] PACKAGE [Create (or modify) an existing
BODY package body

DROP PACKAGE Remove both the package
specification and the package body

DROP PACKAGE BODY Remove the package body only

‘ 12-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

Y ou can create, delete, and modify packages. Y ou can remove both package specification and body
by using the DROP PACKAGE command. Y ou can drop the package body without affecting its
specification.

Oracle9i: Program with PL/SQL 12-25

Practice 12 Overview

This practice covers the following topics:
* Creating packages
* Invoking package program units

‘ 12-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 12 Overview

In this practice, you will create package specifications and package bodies. Y ou will invoke the
constructs in the packages, using sample data.

Oracle9i: Program with PL/SQL 12-26

Practice 12
1. Create a package specification and body called JOB_PACK. (You can save the package body
and specification in two separate files.) This package contains your ADD_JOB, UPD_JOB, and
DEL_J OB procedures, as well as your Q_JOB function.
Note: Usethe codein your previously saved script files when creating the package.
a. Makeall the constructs public.
Note: Consider whether you still need the stand-alone procedures and functions you just
packaged.
b. Invokeyour ADD JOB procedure by passing values| T_SYSANand SYSTEMS
ANALYST as parameters.

c. Query the JOBS table to seethe result.

FodonAB [SO TITEE | MIN SALARY | MAX SALARY
[T_S¥SAM [Systems Analyst | |

2. Create and invoke a package that contains private and public constructs.
a. Create a package specification and package body called EMP_PACK that contains your
NEW EMP procedure as a public construct, and your VALI D_DEPTI Dfunction asa
private construct. (Y ou can save the specification and body into separate files.)
b. Invoke the NEW EMP procedure, using 15 as a department number. Because the
department 1D 15 does not exist in the DEPARTMENTS table, you should get an error
message as specified in the exception handler of your procedure.

c. Invokethe NEW EMP procedure, using an existing department 1D 80.

If you havetime:

3. a Createapackage called CHK PACK that contains the procedures CHK _H REDATE and
CHK_DEPT_MGR. Make both constructs public. (Y ou can save the specification and body
into separate files.) The procedure CHK _HI REDATE checks whether an employee's hire
dateis within the following range: [SYSDATE - 50 years, SYSDATE + 3 months].

Note:

» Ifthedateisinvalid, you should raise an application error with an appropriate
message indicating why the date value is not acceptable.

» Make sure the time component in the date valueis ignored.
» Useaconstant to refer to the 50 years boundary.

* A null valuefor the hire date should be treated as an invalid hire date.

The procedure CHK_DEPT__MGR checks the department and manager combination for a

given employee. The CHK_DEPT _MGR procedure accepts an employee | D and a manager

ID. The procedure checks that the manager and employee work in the same department.

The procedure also checks that the jab title of the manager ID providedis

MANAGER.
Note: If the department ID and manager combination is invalid, you should raise an
application error with an appropriate message.

Oracle9i: Program with PL/SQL 12-27

Practice 12 (continued)
b. Test the CHK HI REDATE procedure with the following command:
EXECUTE chk_pack. chk_hiredate(' 01-JAN-47")
What happens, and why?
c. Testthe CHK HI REDATE procedure with the following command:
EXECUTE chk_pack. chk_hi redat e(NULL)
What happens, and why?
d. Test the CHK _DEPT_MGR procedure with the following command:
EXECUTE chk_pack. chk_dept _ngr (117, 100)
What happens, and why?

Oracle9i: Program with PL/SQL 12-28

More Package Concepts

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Write packages that use the overloading feature

* Describe errors with mutually referential
subprograms

* |Initialize variables with a one-time-only procedure
* |dentify persistent states

13-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

This lesson introduces more advanced features of PL/SQL, including overloading, forward referencing, a

one-time-only procedure, and the persistency of variables, constants, exceptions, and cursors. It also looks
at the effect of packaging functions that are used in SQL statements.

Oracle9i: Program with PL/SQL 13-2

Overloading

* Enables you to use the same name for different
subprograms inside a PL/SQL block, a
subprogram, or a package

* Requires the formal parameters of the
subprograms to differ in number, order, or data
type family

* Enables you to build more flexibility because a
user or application is not restricted by the specific
data type or number of formal parameters

Note: Only local or packaged subprograms can be
overloaded. You cannot overload stand-alone
subprograms.

13-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading

This feature enables you to define different subprograms with the same name. Y ou can distinguish the
subprograms both by name and by parameters. Sometimes the processing in two subprograms is the
same, but the parameters passed to them varies. In that caseit islogical to give them the same name.
PL/SQL determines which subprogram is called by checking its formal parameters. Only local or
packaged subprograms can be overloaded. Stand-alone subprograms cannot be overloaded.
Restrictions

Y ou cannot overload:

» Two subprogramsiif their formal parameters differ only in data type and the different data types
are in the same family (NUVMBER and DECI MAL bdong to the same family)

» Two subprogramsif their formal parameters differ only in subtype and the different subtypes are
based on types in the same family (VARCHAR and STRI NGare PL/SQL subtypes of
VARCHAR?)

» Two functions that differ only in return type, even if the types arein different families
Y ou get arun-time error when you overload subprograms with the above features.

Note: The above restrictions apply if the names of the parameters are also the same. If you use
different names for the parameters, then you can invoke the subprograms by using named notation for
the parameters.

Oracle9i: Program with PL/SQL 13-3

Overloading (continued)

Resolving Calls

The compiler tries to find a declaration that matches the call. It searches first in the current scope and
then, if necessary, in successive enclosing scopes. The compiler stops searching if it finds one or more
subprogram declarations in which the name matches the name of the called subprogram. For like-named
subprograms at the same level of scope, the compiler needs an exact match in number, order, and data
type between the actual and formal parameters.

Oracle9i: Program with PL/SQL 13-4

Overloading: Example

over _pack. sql

CREATE OR REPLACE PACKAGE over _pack
IS
PROCEDURE |add_dept
(p_deptno I N departnments. depart nment i d%IlYPE,

p_name | N departnents. depart nment _nane%lYPE
DEFAULT ' unknown',

p_loc IN departnments.|ocation_i d%YPE DEFAULT 0);
PROCEDURE [add_dept

(p_nane | N depart nents. depart nent _nanme%l YPE
DEFAULT ' unknown',

p loc |INdepartnments.|ocation_id¥WYPE DEFAULT 0);
END over pack;
/

Package created.

13-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading: Example
The dlide shows the package specification of a package with overloaded procedures.

The package contains ADD_DEPT as the name of two overloaded procedures. Thefirst definition takes
three parameters to be able to insert a new department to the department table. The second definition

takes only two parameters, because the department 1D is populated through a sequence.

Oracle9i: Program with PL/SQL 13-5

Overloading: Example

over _pack_body. sql
CREATE OR REPLACE PACKAGE BODY over_pack IS

PROCEDURE| add_dept
(p_deptno TN departnents. departnment i d%YPE

p_nane | N departnments. departnent_nanme% YPE DEFAULT ' unknown',
p_loc |IN departnments.|ocation_id%YPE DEFAULT 0)
IS
BEG N
| NSERT | NTO departnents (departnent _id
department _name, | ocation_id)
VALUES (p_deptno, p_nane, p_loc);
END add_dept ;
PROCEDURE [add_dept |
(p_nane I N departnments. department _nane%d YPE DEFAULT ' unknown',
p_loc |IN departnments.|ocation_id%'YPE DEFAULT 0)
IS
BEG N
| NSERT | NTO departnents (departnent _id
department _name, | ocation_id)
VALUES (departnments_seq. NEXTVAL, p_nane, p_loc);
END add_dept ;
END over _pack;

/

13-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading Example (continued)

If you call ADD_DEPT with an explicitly provided department ID, PL/SQL uses the first version of the
procedure. If you call ADD_DEPT with no department 1D, PL/SQL uses the second version.

EXECUTE over pack. add _dept (980, ' Educati on', 2500)
EXECUTE over pack. add _dept (' Training' , 2400)
SELECT * FROM departnents

WHERE departnent _id = 980;

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER_ID | LOCATION_ID
| 980 |Education | | 2500

SELECT * FROM departnents
WHERE departnent _nanme = 'Training';

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION_ID
| 320 | Training | | 2400

Oracle9i: Program with PL/SQL 13-6

Overloading: Example

* Most built-in functions are overloaded.

* For example, see the TO CHARfunction of the
STANDARD package.

FUNCTI ON TO _CHAR (pl DATE) RETURN VARCHARZ;
FUNCTI ON TO_CHAR (p2 NUVBER) RETURN VARCHARZ;

FUNCTI ON TO _CHAR (pl DATE, P2 VARCHAR2) RETURN VARCHARZ;
FUNCTI ON TO CHAR (pl NUVBER, P2 VARCHAR2) RETURN VARCHARZ;

* If you redeclare a built-in subprogram in a PL/SQL
program, your local declaration overrides the
global declaration.

13-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading Example (continued)
Most built-in functions are overloaded. For example, the function TO_CHAR in the package STANDARD
has four different declarations, as shown in the slide. The function can take either the DATE or the
NUNMBER data type and convert it to the character data type. The format into which the date or number
has to be converted can also be specified in the function call.
If you redeclare a built-in subprogram in another PL/SQL program, your local declaration overrides the

standard or built-in subprogram. To be able to access the built-in subprogram, you need to qualify it with
its package name. For example, if you redeclarethe TO_CHAR function, to access the built-in function

you refer it as: STANDARD. TO CHAR.

If you redeclare a built-in subprogram as a stand-al one subprogram, to be able to access your
subprogram you need to qualify it with your schema name, for example, SCOTT. TO_CHAR.

Oracle9i: Program with PL/SQL 13-7

Using Forward Declarations
You must declare identifiers before referencing them.
CREATE OR REPLACE PACKAGE BODY forward_pack
ISPROCEDURE award_bonus(. . .)
:BEGI N
calc_ratlngF. o) --illegal reference
END;
PROCEDURE cal c_rating(. . .)
:BEGI N
END;
/END f orwar d_pack;
13-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Forward Declarations

PL/SQL does not allow forward references. You must declare an identifier before using it. Therefore, a
subprogram must be declared before calling it.

In the example in the dlide, the procedure CALC_RATI NG cannot be referenced because it has not yet
been declared. Y ou can solvetheillegal reference problem by reversing the order of the two procedures.
However, this easy solution does not always work. Suppose the procedures call each other or you
absolutely want to define them in alphabetical order.

PL/SQL enables for a special subprogram declaration called a forward declaration. It consists of the
subprogram specification terminated by a semicolon. Y ou can use forward declarations to do the
following:

e Define subprogramsin logical or alphabetical order
e Define mutually recursive subprograms
e Group subprograms in a package
Mutually recursive programs are programs that call each other directly or indirectly.

Note: If you receive a compilation error that CALC_RATI NGis undefined, it is only a problem if
CALC _RATI NGisa private packaged procedure. If CALC_RATI NGis declared in the package
specification, the reference to the public procedureis resolved by the compiler.

Oracle9i: Program with PL/SQL 13-8

Using Forward Declarations

CREATE OR REPLACE PACKAGE BODY forward_pack
IS
PROCEDURE [cal c_rating(. . .); -- forward decl aration
PROCEDURE award_bonus(. . .)
IS -- subprograms defined
BEG N -- in al phabetical order
|ca| c_rati ngF. .o
END; |
PROCEDURE|caI c_ratl ng[. .oL)
I'S
BEG N
END,
/END f orwar d_pack;
13-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Forward Declarations (continued)
e Theformal parameter list must appear in both the forward declaration and the subprogram body.

» The subprogram body can appear anywhere after the forward declaration, but both must appear in
the same program unit.

Forward Declar ations and Packages

Forward declarations typically let you group related subprograms in a package. The subprogram
specifications go in the package specification, and the subprogram bodies go in the package body,
wherethey areinvisible to the applications. In this way, packages enable you to hide implementation
details.

Oracle9i: Program with PL/SQL 13-9

Creating a One-Time-Only Procedure

CREATE OR REPLACE PACKAGE taxes

IS
t ax NUVBER;
.. -- declare all public procedures/functions
END taxes;
/
CREATE OR REPLACE PACKAGE BODY t axes
IS
-- declare all private variables
... -- define public/private procedures/functions
BEG N
SELECT rate_val ue
I NTO t ax
FROM tax_rates
VWHERE rate_name = 'TAX ;
END t axes;
/

‘ 13-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Define an Automatic, One-Time-Only Procedure

A one-time-only procedure is executed only once, when the package is first invoked within the user
session. In the preceding slide, the current value for TAX is set to the valuein the TAX_RATES table
thefirst timethe TAXES packageis referenced.

Note: Initialize public or private variables with an automatic, one-time-only procedure when the
derivation is too complex to embed within the variable declaration. In this case, do not initialize the
variable in the declaration, because the value is reset by the one-time-only procedure.

The keyword END is not used at the end of a one-time-only procedure. Observe that in the examplein
the dlide, thereis no END at the end of the one-time-only procedure.

Oracle9i: Program with PL/SQL 13-10

Restrictions on Package Functions
Used in SQL

A function called from:

* A query or DML statement can not end the current
transaction, create or roll back to a savepoint, or
ALTERthe system or session.

* A query statement or a parallelized DML statement
can not execute a DML statement or modify the
database.

* A DML statement can not read or modify the
particular table being modified by that DML
statement.

Note: Calls to subprograms that break the above
restrictions are not allowed.

‘ 13-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Side Effects
For the Oracle server to execute a SQL statement that calls a stored function, it must know the purity level
of astored functions, that is, whether the functions are free of side effects. Side effects are changes to
database tables or public packaged variables (those declared in a package specification). Side effects could
delay the execution of a query, yield order-dependent (therefore indeterminate) results, or require that the
package state variables be maintained across user sessions. Various side effects are not allowed when a
functionis called from a SQL query or DML statement. Therefore, the following restrictions apply to
stored functions called from SQL expressions.
» A function called from a query or DML statement can not end the current transaction, create or roll
back to a savepoint, or alter the system or session
» A function called from a query statement or from a parallelized DML statement can not execute a
DML statement or otherwise modify the database
» A function called from a DML statement can not read or modify the particular table being modified
by that DML statement
Note: Inreleases prior to Oracle8i, the purity checking used to be performed during compilation time, by
including the PRAGVA RESTRI CT_ REFERENCES compiler directive in the package specification. But
from Oracle8i, a user-written function can be called from a SQL statement without any compile-time
checking of its purity. You can use PRAGVA RESTRI CT_REFERENCES to ask the PL/SQL compiler to
verify that a function has only the side effects that you expect. SQL statements, package variable accesses,
or calls to functions that violate the declared restrictions continue to raise PL/SQL compilation errorsto
help you isolate the code that has unintended effects.
Note: Therestrictions on functions discussed above are the same as those discussed in the lesson “ Creating
Functions.” Oracle9i: Program with PL/SQL 13-11

User Defined Package: t axes pack

CREATE OR REPLACE PACKAGE taxes_pack

IS
FUNCTI ON tax (p_val ue | N NUVBER) RETURN NUVBER;

END t axes_pack;
/

Package created.

CREATE OR REPLACE PACKAGE BODY taxes_ pack

IS
FUNCTI ON tax (p_value I N NUVBER) RETURN NUMBER
IS
v_rate NUMBER := 0.08;
BEGA N
RETURN (p_value * v _rate);
END t ax;
END t axes_pack;
/

Package body created

‘ 13-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Encapsulate the function TAX in the package TAXES PACK. Thefunctionis called from SQL statements
on remote databases.

Oracle9i: Program with PL/SQL 13-12

Invoking a User-Defined Package Function
from a SQL Statement

SELECT |t axes_pack. tax(sal ary)|, sal ary, |ast_nane
FROM ‘enpl oyees;

| TAXES_PACK.TAX(SALARY) | SALARY | LAST NAME
| 1920 | 24000 | [King

[1360 | 17000 | [Kochhar

| 1380 | 17000 |[De Haan

| 720 | 59000 [Hunald

| 480 || BO00 |[Emst

| 4224 5280 [Austin

[4224 5280 | [Pataballa

| 3696 | 4520 |Lorentz

| 960 || 12000 ([Greenbery

109 rows selected.

‘ 13-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Calling Package Functions
You call PL/SQL functions the same way that you call built-in SQL functions.
Example
Call the TAX function (in the TAXES PACK package) from a SELECT statement.

Note: If you are using Oracle versions prior to 8i, you need to assert the purity level of the functionin
the package specification by using PRAGVA RESTRI CT_REFERENCES. If thisis not specified, you
get an error message saying that the function TAX does not guarantee that it will not update the
database while invoking the package function in a query.

Oracle9i: Program with PL/SQL 13-13

Persistent State of Package

Variables: Example

CREATE OR REPLACE PACKAGE comm package IS
g_comm NUMBER : = 10; --initialized to 10
PROCEDURE reset _conm (p_conm |IN NUMBER);

END conm package;

/

CREATE OR REPLACE PACKAGE BODY conm package | S
FUNCTI ON validate comm (p_comm |IN NUMVBER)
RETURN BOCOLEAN
IS v_max_comm NUVBER;
BEG N

-- validates commission to be less than maximum
-- commission in the table

END val i date_comm

PROCEDURE reset_comm (p_comm | N NUMBER)

IS BEG N

C -- calls validate_comm with specified value

END reset _conmm
END conm package;
/

‘ 13-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package Variables

This sample package illustrates the persistent state of package variables. The VALI DATE _COVM
function validates commission to be no more than maximum currently earned. The RESET _COVM
procedureinvokes the VALI DATE_COWMfunction. If you try to reset the commission to be higher
than the maximum, the exception RAI SE_APPLI CATI ON_ERRCR israised. On the next page, the
RESET _COWMprocedureis used in the example.

Note: Refer to page 13 of lesson 12 for the code of the VALI DATE _COvMfunction and the

RESET _COwMprocedure. Inthe VALI DATE _COVMfunction, the maximum salary from the
EMPLOYEES tableis sdected into the variable V_MAXSAL. Oncethe variableis assigned a value, the
value persistsin the session until it is modified again. The example in the following slide shows how
the value of a global package variable persists for a session.

Oracle9i: Program with PL/SQL 13-14

Time Scott

Persistent State of Package Variables

Jones

9:00 EXECUTE
comm package. reset _comm

(0. 25)
max_conmm=0.4 > 0.25
9:30 ||9_comm=0.25

9:35

I NSERT | NTO enpl oyees

(last _name, comm ssion_pct)
VALUES (' Madonna', 0.38);
max_conmm=0.8

EXECUTE
comm package. reset _com{ 0. 5)

max_conmm=0.8 > 0.5
g_comm=0.5

‘ 13-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a Package Variable

Y ou can keep track of the state of a package variable or cursor, which persists throughout the user
session, from the time the user first references the variable or cursor to the time the user disconnects.

1. Initialize the variable within its declaration or within an automatic, one-time-only procedure.

2. Changethe value of the variable by means of package procedures.
3. Thevalue of the variable is rdleased when the user disconnects.
The sequence of steps in the dlide shows how the state of a package variable persists.

9:00: When Scott invoked the procedure RESET _COMMwith a commission percentage value 0.25, the
global variable G_COMMwas initialized to 10 in his session. The value 0.25 was validated with the
maximum commission percentage value 0.4 (obtained from the EMPLOYEES table). Because 0.25 is

less than 0.4, the global variable was set to 0.25.

9:30: Jones inserted a new row into EMPL OYEES table with commission percentage value 0.8.

9:35: Jones invoked the procedure RESET _COVMwith a commission percentage value 0.5. The glaobal
variable G_COMMwas initialized to 10 in his session. The value 0.5 was validated with the maximum
commission percentage value 0.8 (because the new row has 0.8). Because 0.5 is less than 0.8, the

global variable was set to 0.5.

Oracle9i: Program with PL/SQL 13-15

Persistent State of Package Variables

Time Scott Jones

9:00 EXECUTE
conm package. reset _conm
(0. 25)
rmX_Comn:O.4 >0.25 | NSERT | NTO en‘p| oyees
9:30 ||9_conm=0.25 (last _nane, conmi ssion_pct)
VALUES (' Madonna', 0.38);
max_conmm=0.8
9:35 EXECUTE
: comm package. reset _com{ 0. 5)
max_conmm=0.8 > 0.5
10:00 | | EXEQUTE g_comm=0.5
conm package. reset _conm
(0.6)
11:00 max_conmm=0.4 < 0.6 INVALID ROLLBACK:
11:01 EXIT

‘ 13-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a Package Variable (continued)

10:00: Scott invoked the procedure with commission percentage value of 0.6. This valueis more than
the maximum commission percentage 0.4 (Scott could not see new value because Jones did not
complete the transaction). Hence, it was invalid.

Oracle9i: Program with PL/SQL 13-16

Persistent State of Package Variables
Time Scott Jones
9:00 ||EXECUTE
conm package. reset _conm
(0. 25)
rmX_Comn:O.4 >0.25 | NSERT | NTO en‘p| oyees
9:30 ||9_conm=0.25 (last _nane, conmi ssion_pct)
VALUES (' Madonna', 0.38);
max_conmm=0.8
9:35 EXECUTE
: comm package. reset _com{ 0. 5)
max_conmm=0.8 > 0.5
10:00 | | EXEQUTE g_conm=0.5
conm package. reset _conm
(0.6)
11:00 max_conmm=0.4 < 0.6 INVALID ROLLBACK:
11:01 EXIT
) Logged In again. g_comm = 10,
11:45 max_conmm=0.4
. 5 EXECUTE
12:00 VALID comm package. reset _com{ 0. 25)

‘ 13-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a Package Variable (continued)

11:00 to 12:00: Jones rolled back the transaction and exited the session. The global value was
initialized to 10 when he logged in at 11:45. The procedure was successful because the new value
0.25 isless than the maximum value 0.4.

Oracle9i: Program with PL/SQL 13-17

Controlling the Persistent State of a
Package Cursor

Example:

CREATE OR REPLACE PACKAGE pack_cur
IS
CURSOR cl1 IS SELECT enpl oyee id
FROM enpl oyees
CORDER BY enpl oyee_ i d DESC,
PROCEDURE procl 3rows;
PROCEDURE proc4_6rows;
END pack_cur;
/

Package created

‘ 13-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a Package Cursor
Example
Use the following steps to control a public cursor:

1. Declarethe public (global) cursor in the package specification.

2. Open the cursor and fetch successive rows from the cursor, using one (public) packaged
procedure, PROC1_3ROWG.

3. Continueto fetch successive rows from the cursor, and then close the cursor by using another
(public) packaged procedure, PROC4_ 6 ROG.

The dlide shows the package specification for PACK_CUR.

Oracle9i: Program with PL/SQL 13-18

Controlling the Persistent State of a

Package Cursor

CREATE OR REPLACE PACKAGE BODY pack_cur IS
v_enpno NUMBER
PROCEDURE procl 3rows IS
BEG N
OPEN c1;
LOOP
FETCH cl1 INTO v_enpno;
DBVS QUTPUT. PUT LI NE(' 3 || (v_enmpno));

EXI T WHEN c1%RONCOUNT
END LOCP;
END procl_ 3rovvs
PROCEDURE proc4 _6rows | S
BEG N
LOOP
FETCH cl1 I NTO v_enpno;
DBVS QUTPUT. PUT LI NE(' " || (v_enpno));
EXI T WHEN c1%RONCOUNT >— 6
END LOCP;
CLOSE c1;
END proc4_6r ows;
/END pack_cur;

‘ 13-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a Package Cursor (continued)
Example

The dlide on this page shows the package body for PACK CUR to support the package specification.
In the package body:

1. Open the cursor and fetch successive rows from the cursor by using one packaged procedure,
PROC1_3ROWS.

2. Continueto fetch successive rows from the cursor and close the cursor, using another
packaged procedure, PROC4 6 ROAS.

Oracle9i: Program with PL/SQL 13-19

Executing PACK _CUR

SET SERVEROQUTPUT ON
EXECUTE pack_cur. procl 3rows
EXECUTE pack_cur. proc4_6rows

14208
14 207
14 206
PLISQL procedure successfilly completed.
14205
14 .204
14203
PLISQL procedure successfully completed,

‘ 13-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Result of Executing PACK_CUR

The state of a package variable or cursor persists across transactions within a session. The state does
not persist from session to session for the same user, nor does it persist from user to user.

Oracle9i: Program with PL/SQL 13-20

PL/SQL Tables
and Records in Packages

CREATE OR REPLACE PACKAGE enp_package IS
TYPE enp_table_type IS TABLE OF enpl oyees¥%RONYPE
| NDEX BY BI NARY_I| NTEGER;
PROCEDURE read_enp_t abl e
(p_enp_table OUT enp_table_type);
END enp_package;
/

CREATE OR REPLACE PACKAGE BODY enp_package IS
PROCEDURE read_enp_t abl e
(p_enp_table OUT enp_table_ type) IS
i Bl NARY_I NTEGER : = 0;

BEG N
FOR enp_record I N (SELECT * FROM enpl oyees)
LOOP
p_enp_table(i) := enp_record;
=0+l
END LOCP;

END read_enp_t abl e;
END enp_package;
/

‘ 13-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Passing Tables of Records to Procedures or Functions Inside a Package
Invoke the READ EMP_TABLE procedure from an anonymous PL/SQL block, using iSQL*Plus.

DECLARE
v_enp_tabl e enp_package. enp_tabl e_type;

BEG N
enp_package.read _enp_tabl e(v_enp_tabl e);
DBVS OUTPUT. PUT_LI NE(' An exanple: '||v_enp_table(4).last _nane);
END;

/

An example: Ernst
PLAZQL procedure successfully completed.

To invokethe READ EMP_TABLE procedure from ancther procedure or any PL/SQL block outside
the package, the actual parameter referring to the OUT parameter P_ EMP_TABLE must be prefixed
with its package name. In the example above, theV_EMP_TABLE variableis declared of the
EMP_TABLE TYPE type with the package name added as a prefix.

Oracle9i: Program with PL/SQL 13-21

Summary

In this lesson, you should have learned how to:

®* Overload subprograms

* Use forward referencing

* Use one-time-only procedures

* Describe the purity level of package functions

* Identify the persistent state of packaged objects

‘ 13-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Overloading is a feature that enables you to define different subprograms with the same name. It is
logical to give two subprograms the same name in situations when the processing in both the
subprograms is the same, but the parameters passed to them varies.

PL/SQL allows for a special subprogram declaration called a forward declaration. Forward
declaration enables you to define subprograms in logical or alphabetical order, define mutually
recursive subprograms, and group subprograms in a package.

A one-time-only procedure is executed only when the package is first invoked within the other user
session. You can usethis feature to initialize variables only once per session.

Y ou can keep track of the state of a package variable or cursor, which persists throughout the user
session, from the time the user first references the variable or cursor to the time that the user
disconnects.

Oracle9i: Program with PL/SQL 13-22

Practice 13 Overview

This practice covers the following topics:
* Using overloaded subprograms
* Creating a one-time-only procedure

‘ 13-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 13 Overview

In this practice you create a package containing an overloaded function. Y ou also create a one-time-
only procedure within a package to populate a PL/SQL table.

Oracle9i: Program with PL/SQL 13-23

Practice 13

1. Create apackage called OVER_LQAD. Create two functions in this package; name each function
PRI NT_I T. The function accepts a date or character string and prints a date or a number, depending
on how the function is invoked.

Note:

e To print the date value, use DD- MON- YY as theinput format, and Fmvont h, dd yyyy asthe
output format. Make sure you handle invalid input.

* Toprint out the number, use 999, 999. 00 astheinput format.

a. Test thefirst version of PRI NT_| T with the following set of commands:

VARI ABLE di spl ay_dat e VARCHAR2(20)

EXECUTE : display date := over load.print_it (TO DATE(' 08- MAR-01'))
PRI NT di splay_date

PLAZQL procedure successfully completed.

| DISPLAY DATE
(March 8 2001

b. Test thesecond version of PRI NT_| T with the following set of commands:
VARI ABLE g_enp_sal NUMBER

EXECUTE :g_enp_sal := over_load.print_it('33,600')

PRI NT g _enp_sal

PLIZQL procedure successfully completed.

| G_EMP_SAL
| 33600

2. Create a hew package, called CHECK PACK, to implement a new business rule.

a. Createaprocedure called CHK _DEPT_JOB to verify whether a given combination of

department ID and job isavalid one. In this case valid means that it must be a combination that
currently exists in the EMPLOYEES table.

Note:
» UseaPL/SQL tableto store the valid department and job combination.
» ThePL/SQL table needs to be populated only once.
» Raisean application error with an appropriate message if the combination is not valid.
b. Test your CHK DEPT_JOB package procedure by executing the following command:
EXECUTE check _pack. chk_dept job(50,' ST _CLERK')
What happens?
c. Test your CHK DEPT JOB package procedure by executing the following command:
EXECUTE check _pack. chk _dept job(20,' ST _CLERK')
What happens, and why?

Oracle9i: Program with PL/SQL 13-24

Oracle Supplied Packages

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Write dynamic SQL statements using DBMS_SQL
and EXECUTE | MVEDI ATE

®* Describe the use and application of some Oracle
server-supplied packages:
— DBMS_DDL
— DBMS JOB
— DBMS_OUTPUT
— UTL_FILE
— UTL_HTTPand UTL_TCP

14-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn how to use some of the Oracle server supplied packages and to take advantage
of their capabilities.

Oracle9i: Program with PL/SQL 14-2

Using Supplied Packages

Oracle-supplied packages:
* Are provided with the Oracle server
e Extend the functionality of the database

* Enable access to certain SQL features normally
restricted for PL/SQL

14-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Supplied Packages

Packages are provided with the Oracle server to allow either PL/SQL access to certain SQL features, or
to extend the functionality of the database.

Y ou can take advantage of the functionality provided by these packages when creating your application,
or you may simply want to use these packages as ideas when you create your own stored procedures.

Most of the standard packages are created by running cat pr oc. sql .

Oracle9i: Program with PL/SQL 14-3

Using Native Dynamic SQL

Dynamic SQL.:

* |s a SQL statement that contains variables that can
change during runtime

* |s a SQL statement with placeholders and is stored
as a character string

* Enables general-purpose code to be written

* Enables data-definition, data-control, or session-
control statements to be written and executed
from PL/SQL

* |s written using either DBM5S_SQL or native dynamic
SQL

14-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Native Dynamic SQL (Dynamic SQL)
Y ou can write PL/SQL blocks that use dynamic SQL. Dynamic SQL statements are not embedded in
your source program but rather are stored in character strings that are input to, or built by, the program.
That is, the SQL statements can be created dynamically at run time by using variables. For example,
you use dynamic SQL to create a procedure that operates on a table whose name is hot known until run
time, or to write and execute a data definition language (DDL) statement (such as CREATE TABLE), a
data control statement (such as GRANT), or a session control statement (such as ALTER SESSI ON). In
PL/SQL, such statements cannot be executed statically.

In Oracle8, and earlier, you haveto use DBMS_SQL to write dynamic SQL.

In Oracle 8i, you can use DBMS_SQL or native dynamic SQL. The EXECUTE | MVEDI ATE statement

can perform dynamic single-row queries. Also, thisis used for functionality such as objects and
collections, which are not supported by DBMS_SQL. If the statement is a multirow SELECT statement,
you use OPEN- FOR, FETCH, and CL CSE statements.

Oracle9i: Program with PL/SQL 14-4

Execution Flow

SQL statements go through various stages:

e Parse

* Bind

e Execute
* Fetch

Note: Some stages may be skipped.

14-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Steps to Process SQL Statements
All SQL statements have to go through various stages. Some stages may be skipped.
Parse

Every SQL statement must be parsed. Parsing the statement includes checking the statement's syntax
and validating the statement, ensuring that all references to objects are correct, and ensuring that the
relevant privileges to those objects exist.

Bind

After parsing, the Oracle server knows the meaning of the Oracle statement but still may not have

enough information to execute the statement. The Oracle server may need values for any bind variable
in the statement. The process of obtaining these values is called binding variables.

Execute

At this point, the Oracle server has all necessary information and resources, and the statement is
executed.

Fetch

In the fetch stage, rows are sdected and ordered (if requested by the query), and each successive fetch
retrieves another row of the result, until the last row has been fetched. Y ou can fetch queries, but not
the DML statements.

Oracle9i: Program with PL/SQL 14-5

Using the DBMS SQL Package

The DBM5_SQL package is used to write dynamic SQL
in stored procedures and to parse DDL statements.
Some of the procedures and functions of the package
include:

— OPEN_CURSCOR

— PARSE

— BI ND_VARI ABLE

— EXECUTE

— FETCH ROWS

— CLOSE_CURSOR

14-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_SQ. Package

Using DBMS_SQL, you can write stored procedures and anonymous PL/SQL blocks that use dynamic
SQL.

DBNMS_SQL can issue data definition language statements in PL/SQL. For example, you can choose to
issue a DROP TABLE statement from within a stored procedure.

The operations provided by this package are performed under the current user, not under the package
owner SYS. Therefore, if the caller is an anonymous PL/SQL block, the operations are performed
according to the privileges of the current user; if the caller is a stored procedure, the operations are
performed according to the owner of the stored procedure.

Using this package to execute DDL statements can result in a deadlock. The most likely reason for this
is that the package is being used to drop a procedure that you are still using.

Oracle9i: Program with PL/SQL 14-6

Components of the DBMS_SQL Package
TheDBMS_SQL package uses dynamic SQL to access the database.

Function or Procedure|Description

OPEN_CURSCR Opens a new cursor and assigns a cursor |D number

PARSE Parses the DDL or DML statement: that is, checks the statement’ s syntax
and associates it with the opened cursor (DDL statements are immediately
executed when parsed)

Bl ND_VARI ABLE Binds the given value to the variable identified by its name in the parsed
statement in the given cursor

EXECUTE Executes the SQL statement and returns the number of rows processed
FETCH_ROWS Retrieves arow for the specified cursor (for multiple rows, cal in aloop)
CLOSE_CURSOR Closes the specified cursor

Oracle9i: Program with PL/SQL 14-7

Using DBVG SQL

CREATE OR REPLACE PROCEDURE delete all rows

BEG N

S(p_tab _name | N VARCHAR2, p_rows_del OUT NUVBER)
cursor _nane | NTEGER;

cursor _nane :=[DBV5_SQL. OPEN_CURSCR, |

DBVE_SQL. PARSE(cur sor _nane, 'DELETE FROM ' || p_tab_nane,
DBMS_SQL. NATI VE) ;

p_Tows_del [[= DBVS_SQL. EXECUTE (Cursor_nane); |

[DBVE_SQL. CLOSE_CURSOR(cur sor _nane) | |

END;

Use dynamic SQL to delete rows

VARI ABLE del et ed NUVMBER
EXECUTE del ete_all _rows('enpl oyees', :del eted)
PRI NT del et ed

FPL/ZOL procedure successfully completed.

14-8

| DELETED
| 109

Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a DBM5_SQL Package

In the slide, the table name is passed into the DELETE_ALL _ROWS procedure by usingan| N
parameter. The procedure uses dynamic SQL to delete rows from the specified table. The number
of rows that are deleted as aresult of the successful execution of the dynamic SQL are passed to
the calling environment through an OUT parameter.

How to Process Dynamic DML

1
2.
3.

Use OPEN_CURSOR to establish an areain memory to process a SQL statement.
Use PARSE to establish the validity of the SQL statement.

Use the EXECUTE function to run the SQL statement. This function returns the number of

row processed.
Use CLOSE_CURSORto close the cursor.

Oracle9i: Program with PL/SQL 14-8

Using the EXECUTE | MVEDI ATE Statement

Use the EXECUTE | MMEDI ATE statement for native
dynamic SQL with better performance.

EXECUTE | MVEDI ATE dynami c_stri ng
[NTO {define_variabl e

[, define_variable] ... | record}]
[USING [N OQUT| I N QUT] bind_argunent
[, [INNOUT|IN QUT] bind_argunment] ...];

®* | NTOis used for single-row queries and specifies
the variables or records into which column values
are retrieved.

®* USI NGis used to hold all bind arguments. The
default parameter mode is | N.

14-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the EXECUTE | MMVEDI ATE Statement
Syntax Definition

Parameter Description

dynanmi c_string A string expression that represents a dynamic SQL statement (without
terminator) or a PL/SQL block (with terminator)

define_variabl e | A variable that stores the selected column value

record A user-defined or Y8ROWTI YPE record that stores a selected row

bi nd_ar gunent An expression whose value is passed to the dynamic SQL statement or
PL/SQL block

You can usethe | NTOclausefor asingle-row query, but you must use OPEN- FOR, FETCH, and
CLOSE for a multirow query.

Note: The syntax shown in the slide is not complete. The other clauses of the statement are discussed in
the Advanced PL/SQL course.

Oracle9i: Program with PL/SQL 14-9

Using the EXECUTE | MVEDI ATE Statement (continued)
In the EXECUTE | MVEDI ATE statement:

Thel NTO clause specifies the variables or record into which column values areretrieved. It is

used only for single-row queries. For each value retrieved by the query, there must bea
corresponding, type-compatible variable or field inthe | NTO clause.

The RETURNI NG | NTO clause specifies the variables into which column values are returned.
It isused only for DML statements that have a RETURNI NG clause (without a BULK
COLLECT clause). For each value returned by the DML statement, there must be a
corresponding, type-compatible variablein the RETURNI NG | NTO clause.

The USI NG clause holds all bind arguments. The default parameter modeis| N. For DML
statements that have a RETURNI NG clause, you can place QUT arguments in the RETURNI NG

I NTO clause without specifying the parameter mode, which, by definition, is OUT. If you use
both the USI NG clause and the RETURNI NG | NTO clause, the USI NG clause can contain only
IN arguments.

At run time, bind arguments replace corresponding placeholders in the dynamic string. Thus, every
placeholder must be associated with a bind argument in the USI NG clause or RETURNI NG | NTO
clause. You can use numeric, character, and string literals as bind arguments, but you cannot use
Boolean literals (TRUE, FALSE, and NULL).

Dynamic SQL supports all the SQL data types. For example, define variables and bind arguments can
be collections, LOBs, instances of an object type, and REFs. As arule, dynamic SQL does not support
PL/SQL-specific types. For example, define variables and bind arguments cannot be Booleans or
index-by tables. The only exception is that a PL/SQL record can appear in the | NTOclause.

Y ou can execute a dynamic SQL statement repeatedly, using new values for the bind arguments.
However, you incur some overhead because EXECUTE | MVEDI ATE reparses the dynamic string
before every execution.

Oracle9i: Program with PL/SQL 14-10

Dynamic SQL Using EXECUTE | MVEDI ATE

CREATE PROCEDURE del rows
(p_table_name |IN VARCHAR2,

'S p_rows_del d QUT NUMBER)

BEG N
|EXECUTE | MVEDI ATE ' delete from' || p_table_nane;
p_rows_delrd : = SQLYROWCOUNT,

Procedure created.

VARI ABLE del et ed NUMBER
EXECUTE del _rows('test_enpl oyees', : del et ed)
PRI NT del et ed

PLIZQL procedure successfully completed.

| DELETED
| 102

‘ 14-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Dynamic SQL Using EXECUTE | MVEDI ATE

Thisis the same dynamic SQL as seen with DBMS_SQL, using the Oracle8i statement EXECUTE
| MVEDI ATE. The EXECUTE | MVEDI ATE statement prepares (parses) and immediately executes the
dynamic SQL statement.

Oracle9i: Program with PL/SQL 14-11

Using the DBMS DDL Package

The DBMS _DDL Package:

®* Provides access to some SQL DDL statements
from stored procedures

®* Includes some procedures:
— ALTER _COWPI LE (object_type, owner, object_name)
DBVS_DDL. ALTER _COVPI LE(' PROCEDURE' , ' A USER , ' QUERY_EMP')

— ANALYZE_ OBJECT (object_type, owner, name,
method)
DBVS_DDL. ANALYZE _OBJECT(' TABLE' ,' A USER ,'JOBS', ' COWUTE')

Note: This package runs with the privileges of calling
user, rather than the package owner SYS.

‘ 14-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_DDL package
This package provides access to some SQL DDL statements, which you can usein PL/SQL programs.

DBNVS_DDL is not allowed in triggers, in procedures called from Forms Builder, or in remote sessions.
This package runs with the privileges of calling user, rather than the package owner SYS.

Practical Uses

* You canrecompile your modified PL/SQL program units by using
DBVS _DDL. ALTER _COWPI LE. The object type must be either procedure, function, package,
package body, or trigger.

* Youcananalyze asingle object, using DBMS_DDL. ANALYZE OBJECT. (Thereis away of
analyzing more than one object at atime, using DBMS_UTI LI TY.) The object type should be
TABLE, CLUSTER, or | NDEX. The method must be COMPUTE, ESTI MATE, or DELETE.

» This package gives developers access to ALTER and ANALYZE SQL statements through PL/SQL
environments.

Oracle9i: Program with PL/SQL 14-12

Using DBMS JOB for Scheduling

DBMS JOB Enables the scheduling and execution of
PL/SQL programs:

®* Submitting jobs

* Executing jobs

®* Changing execution parameters of jobs
* Removing jobs

® Suspending Jobs

‘ 14-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Scheduling Jobs by Using DBMS_JOB

The package DBMS_J OB is used to schedule PL/SQL programs to run. Using DBMS J OB, you can
submit PL/SQL programs for execution, execute PL/SQL programs on a schedule, identify when

PL/SQL programs should run, remove PL/SQL programs from the schedule, and suspend PL/SQL
programs from running.

It can be used to schedul e batch jobs during nonpeak hours or to run maintenance programs during
times of low usage.

Oracle9i: Program with PL/SQL 14-13

DBV JOB Subprograms

Available subprograms include:

e SUBMT

* REMOVE

e CHANGE

* VWHAT

e NEXT_DATE
* | NTERVAL
* BRCKEN

* RUN

‘ 14-14 Copyright © Oracle Corporation, 2001. All rights reserved.

DBVS_JOB Subprograms

Subprogram Description

SUBMI T Submits a job to the job queue

REMOVE Removes a specified job from the job queue

CHANGE Alters a specified job that has already been submitted to the

job queue (you can alter the job description, the time at
which the job will be run, or the interval between executions

of the job)
WHAT Alters the job description for a specified job
NEXT_DATE Alters the next execution time for a specified job
I NTERVAL Alters the interval between executions for a specified job
BROKEN Disables job execution (if ajob is marked as broken, the
Oracle server does not attempt to execute it)
RUN Forces a specified job to run

Oracle9i: Program with PL/SQL 14-14

Submitting Jobs

You can submit jobs by using DBVMS_JOB. SUBM T.
Available parameters include:

e JOB QUT BI NARY_I NTEGER

* WHAT I N VARCHAR2

NEXT_DATE | N DATE DEFAULT SYSDATE

| NTERVAL | N VARCHAR2 DEFAULT ' NULL'
NO PARSE | N BOOLEAN DEFAULT FALSE

‘ 14-15 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS JOB. SUBM T Parameters

TheDBMS_JOB. SUBM T procedure adds a new job to the job queue. It accepts five parameters and
returns the number of a job submitted through the OUT parameter JOB. The descriptions of the
parameters are listed below.

Parameter M ode | Description

JOB ouT Unique identifier of the job

WHAT I N PL/SQL code to execute as a job

NEXT_DATE I'N N ext execution date of the job

I NTERVAL I'N Date function to compute the next execution date of ajob

NO_PARSE I'N Boolean flag that indicates whether to parse the job at job
submission (the default is false)

Note: An exceptionisraised if theinterval does not evaluateto atimein the future.

Oracle9i: Program with PL/SQL 14-15

Submitting Jobs

Use DBMS _JOB. SUBM T to place a job to be executed
in the job queue.
VARI ABLE j obno NUVBER
BEG N
DBVS_JOB. SUBM T (
job => :jobno,
what => ' OVER_PACK. ADD _DEPT(' ' EDUCATION ', 2710);",
next _date => TRUNC(SYSDATE + 1),
interval => ' TRUNC(SYSDATE + 1)'

);

COW T;
END;
/
PRI NT j obno

PLIZQL procedure successfully completed.

| JOBNO
| 1
‘ 14-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

Theblock of code in the slide submits the ADD _DEPT procedure of the OVER _PACK package to the
job queue. Thejob number is returned through the J OB parameter. The WHAT parameter must be

enclosed in single quotation marks and must include a semicolon at the end of the text string. This job
is submitted to run every day at midnight.

Note: In the example, the parameters are passed using named notation.

Thetransactions in the submitted job are not committed until either COVM T isissued, or
DBVS_JOB. RUNis executed to run thejob. COMM T in the slide commits the transaction.

Oracle9i: Program with PL/SQL 14-16

Changing Job Characteristics

e DBMsS JOB. CHANGE: Changes the WHAT, NEXT_DATE,
and | NTERVAL parameters

e DBMS JOB. | NTERVAL: Changes the | NTERVAL
parameter

e DBMS _JOB. NEXT_DATE: Changes the next execution
date

e DBMsS JOB. WHAT: Changes the WHAT parameter

‘ 14-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Jobs After Being Submitted

The CHANGE, | NTERVAL, NEXT_DATE, and WHAT procedures enable you to modify job
characteristics after ajob is submitted to the queue. Each of these procedures takes the J OB parameter
asan | N parameter indicating which job is to be changed.

Example

The following code changes job number 1 to execute on the following day at 6:00 a.m. and every four
hours after that.
BEG N

DBV _JOB. CHANGE(1, NULL, TRUNC(SYSDATE+1) +6/ 24, ' SYSDATE+4/24');
END;
/

PLIZQL procedure successfilly completed.

Note: Each of these procedures can be executed on jobs owned by the username to which the session
is connected. If the parameter what , next _dat e, ori nt er val isNULL, thenthelast values

assigned to those parameters are used.

Oracle9i: Program with PL/SQL 14-17

Running, Removing, and Breaking Jobs

e DBMS JOB. RUN: Runs a submitted job immediately
e DBMsS JOB. REMOVE: Removes a submitted job from
the job queue

e DBMS JOB. BROKEN: Marks a submitted job as
broken, and a broken job will not run

‘ 14-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Running, Removing, and Breaking Jobs

The DBMS_JOB. RUN procedure executes a job immediatdly. Pass the job number that you want to
run immediatdy to the procedure.

EXECUTE DBMS_JOB. RUN(1)
The DBMS_JOB. REMOVE procedure removes a submitted job from the job queue. Pass the job
number that you want to remove from the queue to the procedure.

EXECUTE DBMsS_JOB. REMOVE(1)
The DBMS_JOB. BROKEN marks ajob as broken or not broken. Jobs are not broken by default. You
can change ajob to the broken status. A broken job will not run. There are three parameters for this
procedure. The JOB parameter identifies the job to be marked as broken or not broken. The BROKEN
parameter is a Boolean parameter. Set this parameter to FAL SE to indicate that ajob is not broken,
and set it to TRUE to indicate that it is broken. The NEXT _DATE parameter identifies the next
execution date of thejob.

EXECUTE DBM5_JOB. BROKEN(1, TRUE)

Oracle9i: Program with PL/SQL 14-18

Viewing Information on Submitted Jobs

* Usethe DBA JOBSdictionary view to see the
status of submitted jobs.

SELECT job, |log_user, next_date, next_sec,
br oken, what
FROM DBA _JOBS;

[JOB [LOG_USER [NEXT_DATE [NEXT_SEC[B]| WHAT
| 1[pLsaL [28-sEP01 pEO000 N|OVER PACK ADD_DEPT(EDUCATION' 2710);

* Usethe DBA JOBS RUNNI NGdictionary view to
display jobs that are currently running.

‘ 14-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing Information on Submitted Jobs

The DBA JOBS and DBA JOBS_ RUNNI NGdictionary views display information about jobs in the
gueue and jobs that have run. To be able to view the dictionary information, users should be granted
the SELECT privilege on SYS. DBA_ JOBS.

The query shown in the dide displays the job number, the user who submitted the job, the scheduled
date for thejob to run, thetime for the job to run, and the PL/SQL block executed as a job.

Use the USER JOBS data dictionary view to display information about jobs in the queue for you.
Thisview has the same structure asthe DBA_JOBS view.

Oracle9i: Program with PL/SQL 14-19

Using the DBMs OUTPUT Package

The DBMS _QOUTPUT package enables you to output
messages from PL/SQL blocks. Available procedures

include:

e PUT

* NEW LI NE
e PUT _LINE
* GET_LINE
® GET_LINES

* ENABLE/ DI SABLE

‘ 14-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_QUTPUT Package
The DBMS_OUTPUT package outputs values and messages from any PL/SQL block.

Function or Procedure Description

PUT Appends text from the procedure to the current line of the line
output buffer

NEW LI NE Placesan end_of _| i ne marker in the output buffer

PUT LI NE Combines the action of PUT and NEW LI NE

CGET_LI NE Retrieves the current line from the output buffer into the
procedure

CGET_LI NES Retrieves an array of lines from the output buffer into the
procedure

ENABLE/ DI SABLE Enables or disables calls to the DBMS_OUTPUT procedures

Practical Uses
* You can output intermediary results to the window for debugging purposes.

» This package enables developers to closdy follow the execution of afunction or procedure by
sending messages and values to the output buffer.

Oracle9i: Program with PL/SQL 14-20

Interacting with Operating System Files

e UTL_FI LE Oracle-supplied package:
— Provides text file /0 capabilities
— Is available with version 7.3 and later
e The DBMS LOB Oracle-supplied package:
— Provides read-only operations on external BFI LES

— Is available with version 8 and later
— Enables read and write operations on internal LOBs

‘ 14-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Operating System Files
Two Oracle-supplied packages are provided. You can use them to access operating system files.

With the Oracle-supplied UTL__FI LE package, you can read from and write to operating system files.
This package is available with database version 7.3 and later and the PL/SQL version 2.3 and later.

With the Oracle-supplied package DBMS_L OB, you can read from binary files on the operating
system. This package is available from the database version 8.0 and later. This packageis discussed
later in the lesson “ Manipulating Large Objects.”

Oracle9i: Program with PL/SQL 14-21

What Is the UTL_FI LE Package?

e Extends I/O to text files within PL/SQL

®* Provides security for directories on the server
through theinit. ora file

® |s similar to standard operating system I/O
— Open files
— Get text
— Put text
— Closefiles

— Use the exceptions specific to the UTL_FI LE
package

‘ 14-22 Copyright © Oracle Corporation, 2001. All rights reserved.

The UTL_FI LE Package

The UTL_FI LE package provides text file /O from within PL/SQL. Client-side security

implementation uses normal operating system file permission checking. Server-side security is
implemented through restrictions on the directories that can be accessed. Inthei ni t . or a file, the
initialization parameter UTL_FI LE DI Ris set to the accessible directories desired.

UTL_FILE DIR = directory_nane

For example, the following initialization setting indicates that the directory
[usr/ ngreenbe/ ny_app isaccessibleto thef open function, assuming that the directory is

accessible to the database server processes. This parameter setting is case-sensitive on case-
sensitive operating systems.

UTL_FILE DIR = /user/ ngreenbe/ ny_app
The directory should be on the same machine as the database server. Using the following setting

turns off database permissions and makes all directories that are accessible to the database server
processes also accessibleto the UTL__FI LE package.

UTL_FILE DIR = *

Using the procedures and functions in the package, you can open files, get text from files, put text
into files, and close files. There are seven exceptions declared in the package to account for possible
errors raised during execution.

Oracle9i: Program with PL/SQL 14-22

File Processing Using the
UTL_FI LE Package

'

Get lines
> from the
text file |——>
Open the More Close
text file lines to the
Put lines process? text file
—> into the :
text file

‘ 14-23 Copyright © Oracle Corporation, 2001. All rights reserved.

File Processing Using the UTL_FI LE Package

Beforeusing the UTL _FI LE package to read from or write to atext file, you must first check whether
thetext fileis open by using thel S_OPEN function. If thefile is not open, you open the file with the
FOPEN function. Y ou then either read thefile or writeto the file until processing is done. At the end
of file processing, use the FCLCSE procedure to close thefile.

Note: A summary of the procedures and functions within the UTL__FI LE package is listed on the next
page.

Oracle9i: Program with PL/SQL 14-23

UTL_FI LE Procedures and Functions

* Function FOPEN

* Function | S_OPEN

* Procedure GET_LI NE

* Procedure PUT, PUT LINE, PUTF
* Procedure NEW LI NE

®* Procedure FFLUSH

* Procedure FCLOSE, FCLOSE ALL

‘ 14-24 Copyright © Oracle Corporation, 2001. All rights reserved.

The UTL_FI LE Package: Procedures and Functions

Function or Procedure Description

FOPEN A function that opens afile for input or output and returns afile
handle used in subsequent /O operations

I'S_OPEN A function that returns a Boolean value whenever afile handle
refersto an open file

GET_LI'NE A procedure that reads a line of text from the opened file and

places the text in the output buffer parameter (the maximum size
of an input record is 1,023 bytes unless you specify alarger size
in the overloaded version of FOPEN)

PUT, PUT_LI NE A procedure that writes a text string stored in the buffer
parameter to the opened file (no line terminator is appended by
put ;usenew | i ne toterminatetheline, or use PUT_LI NE
to write a complete line with a terminator)

PUTF A formatted put procedure with two format specifiers: % and
\ n (use % to substitute a value into the output string. \ nisa
new line character)

NEW LI NE Procedure that terminates a line in an output file

FFLUSH Procedure that writes all data buffered in memory to afile
FCLOSE Procedure that closes an opened file

FCLOSE_ALL Procedure that closes all opened file handles for the session

Note: The maximum size of an input record is 1,023 bytes unless you specify a larger sizein the

overloaded version of FOPEN.
Oracle9i: Program with PL/SQL 14-24

Exceptions Specific to the UTL_FI LE

Package
* | NVALI D_PATH
* | NVALI D_MODE
* | NVALI D_FI LEHANDLE
* | NVALI D_OPERATI ON
* READ_ERRCR
* WRI TE_ERROR
* | NTERNAL_ERRCR

‘ 14-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Exceptions to the UTL_FI LE Package

The UTL_FI LE package declares seven exceptions that are raised to indicate an error condition in the
operating system file processing.

Exception Name Description
I NVALI D_PATH Thefilelocation or filename was invalid.
I NVALI D_MODE The OPEN_MODE parameter in FOPEN was invalid.

I NVALI D_FI LEHANDLE | The file handle wasinvalid.
I NVALI D_OPERATI ON [The file could not be opened or operated on as requested.

READ_ERROR An operating system error occurred during the read operation.
VIR TE_ERRCOR An operating system error occurred during the write operation.
| NTERNAL_ERRCR An unspecified error occurred in PL/SQL.

Note: These exceptions must be prefaced with the package name.

UTL_FI LE procedures can also raise predefined PL/SQL exceptions such asNO _DATA FOUND or
VALUE_ERROR.

Oracle9i: Program with PL/SQL 14-25

The FOPENand | S _OPEN Functions

FUNCTI ON FOPEN

(location I N VARCHARZ,
filename I N VARCHARZ,
open_node | N VARCHAR?2)

RETURN UTL_FI LE. FI LE_TYPE;

FUNCTI ON | S_OPEN
(file_handle IN FILE _TYPE)
RETURN BOCLEAN;

‘ 14-26 Copyright © Oracle Corporation, 2001. All rights reserved.

FOPEN Function Parameters
Syntax Definitions

Where | ocation s the operating-system-specific string that
specifies the directory or areain which to
open the file

filenane Is the name of the file, including the
extension, without any pathing information
open_node Is string that specifies how thefileisto be

opened; Supported values are:
‘r’ readtext (use GET_LI NE)
‘W writetext (PUT, PUT_LI NE,
NEW LI NE, PUTF,
FFLUSH)
“a’ append text (PUT, PUT_LI NE,
NEW LI NE, PUTF,
FFLUSH)
Thereturn valueis the file handle that is passed to all subsequent routines that operate on thefile.

I S_OPEN Function

Thefunction| S_OPENtests afile handleto seeif it identifies an opened file. It returns a Boolean
value indicating whether the file has been opened but not yet closed.

Note: For the full syntax, refer to Oracledi Supplied PL/SQL Packages and Types Reference.
Oracle9i: Program with PL/SQL 14-26

Using UTL_FI LE

sal status. sql

CREATE OR REPLACE PROCEDURE sal _st at us
(p_filedir IN VARCHAR2, p_filename |IN VARCHAR2)
IS
v_filehandl e |[UTL_FI LE. FI LE_TYPEt
CURSOR enp_info IS
SELECT | ast_nane, salary, departnent_id
FROM enpl oyees
ORDER BY department _i d;
v_newdept no enpl oyees. depart nent _i d%0 YPE;
v_ol ddept no enpl oyees. departnment _i dW'YPE : = O;
BEG N
v_filehandl e : :|UTL_FI LE. FCPEN |(p filedir, p_filenane,'w);
| UTL_FI LE. PUTF Kv_fi I ehandl e, ' SALARY REPORT: GENERATED ON
%\ n', SYSDATE);
| UTL_FI LE. NEW LI NE|(v_fi | ehandl e);
FOR v_enp_rec IN enp_i nfo LOOP
v_newdeptno := v_enp_rec. department _id;

‘ 14-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Using UTL_FI LE
Example

The SAL_ STATUS procedure creates a report of employees for each department and their salaries.
Thisinformation is sent to atext file by using the UTL_FI LE procedures and functions.

Thevariablev_fi | ehandl e usesatype defined inthe UTL_FI LE package. This package defined
typeisarecord with afield called | D of the Bl NARY _| NTEGER datatype.

TYPE file_type I'S RECORD (id BI NARY_I NTEGER) ;
Thecontentsof fi | e_t ype areprivatetothe UTL_FI LE package. Users of the package should not
reference or change components of this record.
The names of the text file and the location for the text file are provided as parameters to the program.
EXECUTE sal _status(' C\UTL_FILE , ' SAL_RPT. TXT")

Note: Thefilelocation shown in the above exampleis defined asvalueof UTL_FI LE DI Rinthe
init.orafileasfollows. UTL_FILE DIR= C.\UTL_FI LE.

When reading a completefile in aloop, you need to exit the loop using the NO_DATA FOUND
exception. UTL_FI LE output is sent synchronously. DBMS OUTPUT procedures do not produce
output until the procedure is completed.

Oracle9i: Program with PL/SQL 14-27

Using UTL_FI LE

sal status. sql

I F v_newdept no <> v_ol ddeptno THEN
[UTL_FI LE. PUTE|(v_fil ehandl e, ' DEPARTMENT: 9%\n',
v_enp_rec. department _id);

END | F;
[UTL_FILE. PUTF|(v_filehandl e,” EMPLOYEE: % earns: %\n',
v_enp_rec. |l ast_nane, v_enp_rec.salary);
v_ol ddeptno : = v_newdept no;
END LOOP;
UTL_FI LE. PUT_LI NE |(v_filehandl e, '*** END OF REPORT ***');
UTL_FI LE. FCOLGSE |(v_fi | ehandl e) ;
EXCEPTI ON
VWHEN |UTL_FI LE. I NVALI D_FI LEHANDLE|THEN
RAI SE_APPLI CATI ON_ERROR (-20001, 'Invalid File.");

VHEN|UTL_FI LE. WRI TE_ERRCR| THEN

RAI SE_APPLI CATT ON_ERROR (- 20002, ' Unable to wite to
file');

END sal _st at us;
/

‘ 14-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Using UTL_FI LE (continued)
The output for thisreport inthesal _r pt . t xt fileisasfollows:

SALARY REPORT: GENERATED ON 08- MAR- 01

DEPARTIMVENT: 10
EMPLOYEE: Wal en earns: 4400
DEPARTIMVENT: 20
EMPLOYEE: Hartstein earns: 13000
EMPLOYEE: Fay earns: 6000
DEPARTIMVENT: 30
EMPLOYEE: Raphaely earns: 11000
EMPLOYEE: Khoo earns: 3100

DEPARTMENT: 100
EMPLOYEE: G eenberg earns: 12000

DEPARTIMENT: 110
EMPLOYEE: Hi ggi ns earns: 12000
EMPLOYEE: G etz earns: 8300
EMPLOYEE. Grant earns: 7000
*** END OF REPORT ***

Oracle9i: Program with PL/SQL 14-28

The UTL_HTTP Package

The UTL_HTTP package:

* Enables HTTP callouts from PL/SQL and SQL to
access data on the Internet

®* Contains the functions REQUEST and
REQUEST _PI ECES which take the URL of a site as a
parameter, contact that site, and return the data
obtained from that site

®* Requires a proxy parameter to be specified in the
above functions, if the client is behind a firewall

* Raises | NI T_FAI LED or REQUEST_FAI LED
exceptions if HTTP call fails

®* Reports an HTML error message if specified URL
IS not accessible

‘ 14-29 Copyright © Oracle Corporation, 2001. All rights reserved.

The UTL_HTTP Package

UTL_HTTP is a package that allows you to make HT TP requests directly from the database. The
UTL_HTTP package makes hypertext transfer protocol (HTTP) callouts from PL/SQL and SQL. You

can useit to access data on the Internet or to call Oracle Web Server Cartridges. By coupling
UTL_HTTP with the DBMS_JOBS package, you can easily schedule reoccurring requests be made from

your database server out to the Web.

This package contains two entry point functions: REQUEST and REQUEST Pl ECES. Both functions
take a string universal resource locator (URL) as a parameter, contact the site, and return the HTML data
obtained from the site. The REQUEST function returns up to the first 2000 bytes of data retrieved from
the given URL. The REQUEST _PI ECES function returns a PL/SQL table of 2000-byte pieces of the
dataretrieved from the given URL.

If the HT TP call fails, for areason such as that the URL is not properly specified in the HTTP syntax
then the REQUEST _FAI LED exception is raised. If initialization of the HTTP-callout subsystem fails,
for areason such as a lack of available memory, thenthel NI T_FAI LED exceptionis raised.

If thereis no response from the specified URL, then a formatted HTML error message may be returned.

If REQUEST or REQUEST _PI ECES fails by returning either an exception or an error message, then
verify the URL with a browser, to verify network availability from your machine. If you are behind a
firewall, then you need to specify proxy as a parameter, in addition to the URL.

This package is covered in more detail in the course Administering Oracle9i Application Server.
For more information, refer to Oracledi Supplied PL/SQL Packages Reference.
Oracle9i: Program with PL/SQL 14-29

Using the UTL_HTTP Package

SELECT UTL_HTTP. REQUEST(' http://ww. oracl e.con ,
" edu- proxy. us. oracl e.com)

FROM DUAL;

| UTL_HTTP.REQUEST(HTTP:/MWWW,.0ORACLE.COM','EDU-FROXY.US.ORACLE.COM)

<hitmls <heads <title=Oracle Corporation<Aitle> <meta name="description” content="Oracle Carporation provides the software that powers the
Internet. F ar more infarmation about Oracle, please call B50/506-7000."= <meta name="keywords" content="Cracle, Oracle Corporation, Oracle
Corp,OracleBi, Oracle 9i, Bi, 9i"> <script language="JavaScript" src="http:/fwwrw.oracle.comfadmin/jscripts/lib.js"> </script> <fhead> <body
bycolor="# FFFFF" text="#000000 " link="#000000" Wlink="#FFO000"> <--Start Header-> <center> <table border=0 cellspacing=0 cellpadding=3
width=850 align="center"> <tr= <td align= center valign="middle"> <div align="right"><a

href="http:/Awwe. oracle. comfelogitrackur?d=http: fmy. oracle. com&di=B72609" target="_top"»<img src="per saonalize.gif" width="50" height="50"
border="0" alt="My Oracle"=&nhsp; <z href="/products/index html?content. html" target="_top"=<img src="products .gif" width="50"
height="50" barder="0" alt="Praducts"> <imy src="store. gif" width=" 150"
height="50" border="0" alt="Store"=</ax</div><Ad> <td align=center valign="middle" width="34%"> <div align="center"><a hreE="/"
target="_top"=<i mg src="logo.gif" width="175" height="28" border=0 alt="Oracle.com" align="middle"=</div><itd> <id align=center
valign="middle"> <div align="lef t"><img src="download. gif" width="50" height="80" border="0"
alt="Download"=<fa= <a href="/corporate/co ntactfindex. htmi?content. ktml" target="_top"»<imy src="contact. gif" width="80" height="50"
border="0" alt="Contact"> <a href="/pls/use/use_gu

ery_html show_guery_form?p_person_id=1008armp; p_location_array=&p_doc_location_array=&, p_keyword_array=8&armp; p_value_array="=<img
sre="search. gif " width="50" height="50" border="0" alt="Search"=<fa=</div> <fd><Ar=<Aable> <--End Header-» <table border=0 cellspacing=0
cellpadding=0 width="850"> <tr=<td align="center" width="100%"> <table

‘ 14-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UTL_HTTP Package

The SELECT gtatement and the output in the slide show how to use the REQUEST function of the
UTL_HTTP packageto retrieve contents from the URL www. or acl e. com The second parameter to the
function indicates the proxy because the client being tested is behind a firewall.

Theretrieved output isin HTML format.

Y ou can use the function in a PL/SQL block as shown below. The function retrieves up to 100 pieces of
data, each of a maximum 2000 bytes from the URL. The number of pieces and the total length of the data
retrieved are printed.
DECLARE

X UTL_HTTP. HTML_PI ECES;
BEG N

X := UTL_HTTP. REQUEST PI ECES(' http://ww. oracl e.com ', 100,
"edu- proxy.us.oracle.com);

DBVS_OUTPUT. PUT_LI NE(x. COUNT || ' pieces were retrieved.');
DBVS OUTPUT. PUT _LINE('"with total length ');
| F x. COUNT < 1 THEN DBMS_OUTPUT. PUT_LINE(' Q") ;
ELSE DBMS_OUTPUT. PUT_LI NE((2000* (x. COUNT - 1)) +LENGTH(x(x. COUNT)));
END | F;
END;
/

12 pieces were retrieved.

with total length

23553

PLISQL procedure successfilly completed.

Oracle9i: Program with PL/SQL 14-30

Using the UTL_TCP Package

The UTL_TCP Package:

* Enables PL/SQL applications to communicate with
external TCP/IP-based servers using TCP/IP

®* (Contains functions to open and close connections,
to read or write binary or text data to or from a
service on an open connection

®* Requires remote host and port as well as local host
and port as arguments to its functions

* Raises exceptions if the buffer size is too small,
when no more data is available to read from a
connection, when a generic network error occurs, or
when bad arguments are passed to a function call

‘ 14-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UTL_TCP Package

The UTL_ TCP package enables PL/SQL applications to communicate with external TCP/IP-based servers
using TCP/IP. Because many Internet application protocols are based on TCP/IP, this package is useful to
PL/SQL applications that use Internet protocols.

The package contains functions such as:

OPEN_CONNECTI ON: This function opens a TCP/IP connection with the specified remote and local host
and port details. The remote host is the host providing the service. The remote port is the port number on
which the serviceis listening for connections. The local host and port numbers represent those of the host
providing the service. The function returns a connection of PL/SQL record type.

CLOSE_CONNECTI ON: This procedure closes an open TCP/IP connection. It takes the connection details
of apreviously opened connection as parameter. The procedure CLOSE_ALL_CONNECTI ONS closes all
open connections.

READ BI NARY()/ TEXT() / LI NE() : This function receives binary, text, or text line datafrom a
service on an open connection.

WRI TE_BI NARY() / TEXT()/ LI NE() : This function transmits binary, text, or text line messageto a
service on an open connection.

Exceptions are raised when buffer size for theinput is too small, when generic network error occurs, when
no more data is available to read from the connection, or when bad arguments are passed in a function call.

This package is discussed in detail in the course Administering OracleQi Application Server. For more
information, refer to Oracle 9i Supplied PL/SQL Packages Reference.

Oracle9i: Program with PL/SQL 14-31

e DBVS_ALERT

e DBMS_LOCK

Oracle-Supplied Packages

Other Oracle-supplied packages include:

e DBMS_APPLI CATI ONLINFO ¢ DBMS_TRANSACTI ON
e DBMs_DESCRI BE e DBMS_UTILITY

e DBMsS_SESSI ON

e DBVMS_SHARED POOL

‘ 14-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Oracle-Supplied Packages

Package

Description

DBMS_ALERT

Provides notification of database events

DBMS_APPLI CATI ON_I NFO

Allows application tools and application developers to inform the
database of the high level of actionsthey are currently performing

DBMS_DESCRI BE

Returns a description of the arguments for a stored procedure

DBMS_LOCK

Requests, converts, and releases userlocks, which are managed by
the RDBM S lock management services

DBMS_SESSI ON

Provides access to SQL session information

DBMS_SHARED_POOL

K eeps objects in shared memory

DBMS_TRANSACTI ON

Controlslogical transactions and improves the performance of
short, nondistributed transactions

DBMS_UTI LI TY

Analyzes objects in a particular schema, checks whether the server
isrunning in parallel mode, and returns the time

Oracle9i: Program with PL/SQL 14-32

Oracle-Supplied Packages

Thefollowing list summarizes and provides a brief description of the packages supplied with Oracle9i.

Built-in Name Description
CALENDAR Provides calendar maintenance functions
DBMS_ALERT Supports asynchronous notification of database events.

Messages or aerts are sent on a COMM T command.
M essage transmittal is one way, but one sender can alert
severa receivers.

DBMS_APPLI CATI ON_I NFO

I's used to register an application name with the database
for auditing or performance tracking purposes

DBVS_DEFER_QUERY
DBVS_DEFER_SYS

DBMS_AQ Provides message queuing as part of the Oracle server; is
used to add a message (of a predefined object type) onto a
queue or dequeue a message

DBVS_AQADM Is used to perform administrative functions on a queue or
gueue table for messages of a predefined object type

DBVS_DDL Is used to embed the equivalent of the SQL commands
ALTER, COVPI LE, and ANALYZE within your PL/SQL
programs

DBVMS_DEBUG A PL/SQL API to the PL/SQL debugger layer, Probe, in
the Oracle server

DBSM_DEFER Is used to build and administer deferred remote procedure

calls (use of this feature requires the Replication Option)

DBMS_DESCRI BE

I's used to describe the arguments of a stored procedure

DBVS_DI STRI BRUTED_

Isused to maintain the Trusted Serverslist, which is used

TRUST_ADM N in conjunction with the list at the central authority to
determine whether a privileged database link from a
particular server can be accepted

DBMS_HS Is used to administer heterogeneous services by

registering or dropping distributed external procedures,
remote libraries, and non-Oracle systems (you use
dbrs_hs to create or drop some initialization variables
for non-Oracle systems)

DBVG_HS_EXTPROC

Enables heterogeneous services to establish security for
distributed external procedures

DBMS_HS PASSTHROUGH

Enables heterogeneous services to send pass-through SQL
statements to non-Oracle systems

DBVS_I OT Is used to schedule administrative procedures that you
want performed at periodic intervals; is also the interface
for the job queue

DBVS_JOB Is used to schedule administrative procedures that you
want performed at periodic intervals

DBVS_LOB Provides general purpose routines for operations on

Oracle large objects (LOBs) data types: BLOB, CLOB
(read only) and BFI LES (read-only)

Oracle9i: Program with PL/SQL 14-33

Oracle Supplied Packages (continued)

Built-in Name

Description

DBMS_ LOCK

Is used to request, convert, and release locks through
Oracle Lock M anagement services

DBMS_ L OGMNR

Provides functions to initialize and run the log reader

DBMS_LOGMNR_D

Queries the dictionary tables of the current database, and
creates a text based file containing their contents

DBMS_OFFLI NE_OG

Provides public APIs for offline instantiation of master
groups

DBMS_OFFLI NE_SNAPSH
orT

Provides public APIs for offline instantiation of snapshots

DBMS_OLAP

Provides procedures for summaries, dimensions, and
guery rewrites

DBMS_ORACLE_TRACE_
AGENT

Provides client callable interfaces to the Oracle TRACE
instrumentation within the Oracle7 server

DBMS_ORACLE_TRACE_
USER

Provides public access to the Oracle7 release server
Oracle TRACE instrumentation for the calling user

DBMS_OUTPUT

Accumulates information in a buffer so that it can be
retrieved out later

DBMS_PCLXUTI L

Provides intrapartition parallelism for creating partition-
wise local indexes

DBMS_PI PE

Provides a DBM S pipe service that enables messages to
be sent between sessions

DBMS_PROFI LER

Provides a Probe Profiler API to profile existing PL/SQL
applications and identify performance bottlenecks

DBMS_ RANDOM

Provides a built-in random number generator

DBMS_RECTI FI ER_DI FF

Provides APIs used to detect and resolve data
inconsistencies between two replicated sites

DBMS_REFRESH

Is used to create groups of snapshots that can be refreshed
together to a transactionally consistent point in time;
requires the Distributed option

DBMS_REPAI R

Provides data corruption repair procedures

DBMS_REPCAT

Provides routines to administer and update the replication
catalog and environment; requires the Replication option

DBMS_REPCAT_ADM N

Is used to create users with the privileges needed by the
symmetric replication facility; requires the Replication
option

DBMS_REPCAT_
| NSTATI ATE

Instantiates deployment templates; requires the
Replication option

DBMS_REPCAT_RGT

Controls the maintenance and definition of refresh group
templates; requires the Replication option

DBMS_REPUTI L

Provides routines to generate shadow tables, triggers, and
packages for table replication

DBMS_RESOURCE_
MANAGER

M aintains plans, consumer groups, and plan directives; it
also provides semantics so that you may group together
changes to the plan schema

Oracle9i: Program with PL/SQL 14-34

Oracle Supplied Packages (continued)

Built-in Name

Description

DBVS_RESOURCE._
MANAGER PRI VS

Maintains privileges associated with resource consumer
groups

DBMS_RLS Provides row-level security administrative interface

DBMS_ROW D Is used to get information about ROW Ds, including the
data block number, the object number, and other
components

DBVS_SESSI ON Enables programmatic use of the SQL ALTER SESSI ON

statement as well as other session-level commands

DBVS_SHARED_POCL

Is used to keep objectsin shared memory, so that they are
not aged out with the normal LRU mechanism

DBMS_SNAPSHOT

Is used to refresh one or more snapshots that are not part
of the same refresh group and purge logs; use of this
feature requires the Distributed option

DBVS_SPACE

Provides segment space information not available through
standard views

DBVS_SPACE_ADM N

Provides tablespace and segment space administration not
available through standard SQL

DSVS_SQL

Is used to write stored procedure and anonymous PL/SQL
blocks using dynamic SQL ; also used to parse any DML
or DDL statement

DBVS_STANDARD

Provides language facilities that help your application
interact with the Oracle server

DBMS_STATS Provides a mechanism for users to view and modify
optimizer statistics gathered for database objects
DBMS_TRACE Provides routines to start and stop PL/SQL tracing

DBMS_TRANSACTI ON

Provides procedures for a programmatic interface to
transaction management

DBV _TTS

Checks whether if the transportable set is self-contained

DBVS_UTI LI TY

Provides functionality for managing procedures, reporting
errors, and other information

DEBUG_EXTPROC

Is used to debug external procedures on platforms with
debuggers that can attach to a running process

QUTLN_PKG Provides the interface for procedures and functions
associated with management of stored outlines

PLI TBLM Handles index-tabl e operations

SDO_ADM N Provides functions implementing spatial index creation
and maintenance for spatia objects

SDO_GEOM Provides functions implementing geometric operations on
spatial objects

SDO_M GRATE Provides functions for migrating spatial data from release
7.3.3and 7.3.4t08.1.x

SDO_TUNE Provides functions for selecting parameters that determine

the behavior of the spatial indexing scheme used in the
Spatial Cartridge

Oracle9i: Program with PL/SQL 14-35

Oracle Supplied Packages (continued)

Built-in Name Description

STANDARD Declares types, exceptions, and subprograms that are
available automatically to every PL/SQL program

TI' MESERI ES Provides functions that perform operations, such as
extraction, retrieval, arithmetic, and aggregation, on time
series data

TI' VESCALE Provides scale-up and scale-down functions

TSTOOLS Provides administrative tools procedures

UTL_COLL Enables PL/SQL programs to use collection locators to
guery and update

UTL_FILE Enables your PL/SQL programs to read and write
operating system (OS) text files and provides a restricted
version of standard OS stream file 1/0O

UTL_HTTP Enables HTTP callouts from PL/SQL and SQL to access
data on the Internet or to call Oracle Web Server
Cartridges

UTL_PG Provides functions for converting COBOL numeric data
into Oracle numbers and Oracle numbers into COBOL
numeric data

UTL_RAW Provides SQL functions for RAWdata types that
concatenate, obtain substring, and so on, to and from RAW
datatypes

UTL_REF Enables a PL/SQL program to access an object by
providing areference to the object

VI R_PKG Provides analytical and conversion functions for visual
information retrieval

Oracle9i: Program with PL/SQL 14-36

Summary

In this lesson, you should have learned how to:

* Take advantage of the preconfigured packages
that are provided by Oracle

* Create packages by using the cat proc. sgl script
* Create packages individually.

‘ 14-37 Copyright © Oracle Corporation, 2001. All rights reserved.

DBNVS Packages and the Scripts to Execute Them

DBMS ALERT dbnsal rt. sql
DBMS_APPLI CATI ON_I NFO dbnmsuti | . sql
DBMS_DDL dbnsutil . sql
DBMS_LOCK dbnsl ock. sql
DBMS_OUTPUT dbnsot pt . sql
DBMS_PI PE dbnspi pe. sql
DBMS_SESSI ON dbnsutil . sql
DBMS_SHARED POOL dbnsspool . sql
DBMS_SQL dbnssql . sql
DBMS_TRANSACTI ON dbnsutil . sql
DBMS UTILITY dbnsutil . sql

Note: For more information about these packages and scripts, refer to Oracle9i Supplied PL/SQL
Packages and Types Reference.

Oracle9i: Program with PL/SQL 14-37

Practice 14 Overview

This practice covers using:

e DBMs_SQL for dynamic SQL

e DBMs DDL to analyze atable

e DBMs JOBto schedule atask

e UTL_FI LEto generate text reports

‘ 14-38 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 14 Overview

In this practice, you use DBMS_SQL to implement a procedureto drop atable. You also usethe
EXECUTE | MVEDI ATE command to drop atable. You use DBMS _DDL to analyze objectsin your
schema, and you can schedul e the anal yze procedure through DBMS _J OB.

In this practice, you also write a PL/SQL program that generates customer statuses into a text file.

Oracle9i: Program with PL/SQL 14-38

Practice 14
1. a

Create a DROP_TABLE procedure that drops the table specified in the input parameter.
Use the procedures and functions from the supplied DBMS_SQL package.

To test the DROP_TABLE procedure, first create a new table called EMP_DUP asa
copy of the EMPLOYEES table.

Execute the DROP_TABLE procedure to drop the EMP_DUP table.

Create another procedure called DROP_TABLE2 that drops the table specified in the
input parameter. Usethe EXECUTE | MVEDI ATE statement.

Repesat thetest outlined in steps 1-b and 1-c.

a. Create aprocedure called ANALYZE OBJECT that analyzes the given object that you

specified inthe input parameters. Use the DBMS _DDL package, and use the COVPUTE
method.

Test the procedure using the EMPLOYEES table. Confirm that the

ANALYZE OBJECT procedure has run by querying the LAST ANALYZED columnin
the USER_TABLES data dictionary view.

LAST ANAL

[27-5EP-01

If you havetime:

4. a

Schedule ANALYZE_OBJECT by using DBMS_J OB. Analyze the DEPARTVENTS
table, and schedule the job to run in five minutes time from now. (To start thejob in
five minutes from now, set the parameter NEXT_DATE = 5/(24*60) = 1/288.)
Confirm that the job has been scheduled by using USER _JOBS.

Create a procedure called CROSS _AVGSAL that generates atext file report of

employees who have exceeded the average salary of their department. The partial
codeis provided for you in thefilel ab14_5. sql .

Y our program should accept two parameters. Thefirst parameter identifies the output
directory. The second parameter identifies the text file name to which your procedure
writes.

Y our instructor will inform you of the directory location. When you invoke the
program, name the second parameter sal _r pt xx. t xt wherexx stands for your
user number, such as 01, 15, and so on.
Add an exception handling section to handle errors that may be encountered from
using the UTL_FI LE package.
Sample output from this filefollows:
EMPLOYEES OVER THE AVERAGE SALARY OF THEI R DEPARTMENT:
REPORT GENERATED ON 26- FEB- 01

Hartstein 20 $13, 000. 00
Raphael y 30 $11, 000. 00
Mar vi s 40 $6, 500. 00

x** END OF REPORT ***

Oracle9i: Program with PL/SQL 14-39

Oracle9i: Program with PL/SQL 14-40

Manipulating Large Objects

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

15-2

Compare and contrast LONGand large object (LOB)
data types

Create and maintain LOB data types
Differentiate between internal and external LOBs
Use the DBMS LOB PL/SQL package
Describe the use of temporary LOBs

Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

Databases have long been used to store large objects. However, the mechanisms built into databases
have never been as useful asthe new large object (LOB) datatypes provided in OracleB. This lesson
describes the characteristics of the new data types, comparing and contrasting them with earlier data
types. Examples, syntax, and issues regarding the LOB types are also presented.

Note: A LOB isadatatype and should not be confused with an object type.

Oracle9i: Program with PL/SQL 15-2

What Is a LOB?

LOBs are used to store large unstructured data such as
text, graphic images, films, and sound waveforms.

“Four score and seven years ago
our fathers brought forth upon
this continent, a new nation,

conceived in LIBERTY, and dedi cated
to the proposition that all nen

are created equal .” . MOV]e
BFI LE
Text Photo ()
(CLOB) (BLOB)
15-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview

A LOB isadatatypethat is used to store large, unstructured data such as text, graphic images, video clippings,
and so on. Structured data such as a customer record may be a few hundred bytes, but even small amounts of
multimedia data can be thousands of times larger. Also, multimedia data may reside on operating system (OS)
files, which may need to be accessed from a database.

There are four large object data types:

BL OB represents abinary large object, such as a video clip.
CL OB represents a character large object.
NCL OB represents a multibyte character large object.

BFI LE represents a binary file stored in an operating system binary file outside the database. The BFI LE
column or attribute stores afile locator that points to the external file.

LOBs are characterized in two ways, according to their interpretation by the Oracle server (binary or
character) and their storage aspects. LOBs can be stored internally (inside the database) or in host files.
There are two categories of LOBs:

Internal LOBs (CLOB, NCLOB, BLOB) are stored in the database.
External files (BFI LE) are stored outside the database.

The Oracledi Server performsimplicit conversion between CLOB and VARCHARZ data types. The other implicit
conversions between LOBs are not possible. For example, if the user creates atable T with a CLOB column and
atable S with a BLOB column, the data is not directly transferable between these two columns.

BFI LEs can be accessed only in read-only mode from an Oracle server.

Oracle9i: Program with PL/SQL 15-3

Contrasting LONGand LCB Data Types

LONGand LONG RAW LOB
Single LONGcolumn per table Multiple LOB columns per table
Up to 2 GB Up to 4 GB
SELECT returns data SELECT returns locator
Data stored in-line Data stored in-line or out-of-line
Sequential access to data Random access to data

15-4 Copyright © Oracle Corporation, 2001. All rights reserved.

LONGand LOB Data Types

L ONG and L ONG RAW(data types were previously used for unstructured data, such as binary images,
documents, or geographical information. These data types are superseded by the LOB data types. Oracle
9i provides a LONGto-LOB API to migrate from L ONG columns to LOB columns.

It is beneficial to discuss LOB functionality in comparison to the older types. In the bulleted list below,
LONGsrefersto LONGand LONG RAW and LOBsrefersto al LOB datatypes:

» A table can have multiple LOB columns and abject type attributes. A table can have only one LONG
column.

e Themaximum size of LONGs is 2 gigabytes; L OBs can be up to 4 gigabytes.
* LOBsreturn thelocator; LONGs return the data.

» LOBsdorealocator in thetable and the datain a different segment, unless the data is less than
4,000 bytes;, LONGs store all data in the same data block. In addition, LOBs allow data to be stored
in a separate segment and tablespace, or in a host file.

» LOBscan be object type attributes; LONGs cannot.

e LOBssupport random piecewise access to the data through afile-like interface; LONGs are
restricted to sequential piecewise access.

The TO_LOB function can be used to covert LONGand LONG RAWvalues in a column to LOB values.
You usethisin the SELECT list of asubquery in an | NSERT statement.

Oracle9i: Program with PL/SQL 15-4

Anatomy of a LOB

The LOB column stores a locator to the LOB's value.

LOB locator BI

LOB value
LOB column
of atable
15-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of a LOB
There are two distinct parts of a LOB:
e LOBvalue Thedatathat constitutes the real object being stored.
e LOBlocator: A pointer to the location of the LOB value stored in the database.

Regardless of where the value of the LOB is stored, alocator is stored in therow. You can think of a LOB

locator as a pointer to the actual location of the LOB value.
A LOB column does not contain the data; it contains the locator of the LOB value.

When a user creates an internal LOB, the valueis stored in the LOB segment and a locator to the out-of-
line LOB valueis placed in the LOB column of the corresponding row in the table. External LOBs store the

data outside the database, so only alocator to the LOB valueis stored in the table.

To access and manipulate LOBs without SQL DML, you must create a L OB locator. Programmatic
interfaces operate on the LOB values, using these locatorsin a manner similar to operating system file

handles.

Oracle9i: Program with PL/SQL 15-5

Internal LOBs

The LOB value is stored in the database.

—

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nation,
conceived in LIBERTY, and dedi cated
to the proposition that all nen
are created equal .”

15-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Features of Internal LOBs

Theinternal LOB is stored inside the Oracle server. A BLOB, NCLOB, or CLOB can be one of the
following:

* Anattribute of a user-defined type

* Acolumninatable

* A bindor host variable

e A PL/SQL variable, parameter, or result
Internal LOBs can take advantage of Oracle features such as:

e Concurrency mechanisms

» Redo logging and recovery mechanisms

» Transactions with commit or rollbacks
The BLOB datatypeis interpreted by the Oracle server as a bitstream, similar to the LONG RAWdata type.
The CLOB datatypeisinterpreted as a single-byte character stream.

The NCLOB datatypeisinterpreted as a multiple-byte character stream, based on the byte length of the
database national character set.

Oracle9i: Program with PL/SQL 15-6

Managing Internal LOBs

®* To interact fully with LOB, file-like interfaces are
provided in:

— PL/SQL package DBVS LOB
— Oracle Call Interface (OCI)

— Oracle Objects for object linking and embedding
(OLE)

— Pro*C/C++ and Pro*COBOL precompilers
— JDBC

®* The Oracle server provides some support for LOB
management through SQL.

15-7 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Manage LOBs
Use the following method to manage an internal LOB:
1. Create and populate the table containing the LOB data type.
2. Declareand initialize the LOB locator in the program.
3. UseSELECT FOR UPDATE to lock the row containing the LOB into the LOB locator.
4

Manipulate the LOB with DBMS L OB package procedures, OCI calls, Oracle Objects for OLE,
Oracle precompilers, or IDBC using the LOB locator as areference to the LOB value.

You can also manage LOBs through SQL.
5. Usethe COVM T command to make any changes permanent.

Oracle9i: Program with PL/SQL 15-7

What Are BFI LES?

The BFI LE data type
supports an external or
file-based large object as:

e Attributes in an object type
® Column values in atable

Movie
(BFI LE)

15-8 Copyright © Oracle Corporation, 2001. All rights reserved.

What Are BFI LES?

BFI LEs are external large objects (LOBs) stored in operating system files outside of the database
tablespaces. The Oracle SQL data type to support these large objectsis BFI LE. The BFI LE datatype
stores alocator to the physical file. A BFI LE canbein G F, JPEG, MPEG, MPEQR2, text, or other
formats. The External LOBs may be located on hard disks, CDROMSs, photo CDs, or any such device,
but asingle LOB cannat extend from one device to another.

The BFI LE datatypeis available so that database users can access the external file system. The
Oracledi server provides for:

» Définition of BFI LE objects
» Assaociation of BFI LE objects to corresponding external files
e Security for BFI LEs

Therest of the operations required to use BFI LEs are possible through the DBMS L OB package and the
Oracle Call Interface.

BFI LEs areread-only, so they do not participate in transactions. Any support for integrity and durability

must be provided by the operating system. The user must create the file and place it in the appropriate
directory, giving the Oracle process privileges to read the file. When the LOB is deleted, the Oracle

server does not delete thefile. The administration of the actual files and the OS directory structures to
house thefilesis the responsibility of the database administrator (DBA), system administrator, or user.
The maximum size of an external large object is operating system dependent but cannot exceed four
gigabytes.

Note: BFI LEs are available in the Oracle8 database and in later releases.

Oracle9i: Program with PL/SQL 15-8

Securing BFI LEs

o,

_;?\/

User

A Access
” permissions
|

‘_____

Movie
(BFI LE)

15-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Securing BFI LEs

Unauthenticated access to files on a server presents a security risk. The Oracleli Server can act asa
security mechanism to shield the operating system from unsecured access while removing the need to
manage additional user accounts on an enterprise computer system.

File L ocation and Access Privileges

The file must reside on the machine where the database exists. A time-out to read a nonexistent BFI LE
is based on the operating system value.

You can read a BFI LE in the same way as you read an internal LOB. However, there could be
restrictions rdated to thefileitsdf, such as:

e Access permissions

» File system space limits

* Non-Oracle manipulations of files
* OSmaximumfilesize

The Oracledi RDBM S does not provide transactional support on BFI LEs. Any support for integrity and
durability must be provided by the underlying file system and the OS. Oracle backup and recovery
methods support only the LOB locators, not the physical BFI LES.

Oracle9i: Program with PL/SQL 15-9

A New Database Object: DI RECTORY

\\
O
{k\%:'l'-”/
User
DI RECTORY
LOB_PATH=
"/oraclel/lobl'
>
Movie
(BFI LE)
15-10 Copyright © Oracle Corporation, 2001. All rights reserved.

A New Database Object: DI RECTORY

A DI RECTORY is a nonschema database object that provides for administration of access and usage of
BFI LEsin an Oracle9i Server.

A DI RECTORY specifies an alias for a directory on the file system of the server under which a BFI LE
is located. By granting suitable privileges for these items to users, you can provide secure access to files
in the corresponding directories on a user-by-user basis (certain directories can be made read-only,
inaccessible, and so on).

Further, these directory aliases can be used while referring to files (open, close, read, and so on) in
PL/SQL and OCI. This provides application abstraction from hard-coded path names, and gives
flexibility in portably managing file locations.

The DI RECTORY object is owned by SYS and created by the DBA (or a user with CREATE ANY

DI RECTORY privilege). Directory objects have abject privileges, unlike any other nonschema object.
Privileges to the DI RECTORY object can be granted and revoked. Logical path names are not supported.

The permissions for the actual directory are operating system dependent. They may differ from those
defined for the DI RECTORY object and could change after the creation of the DI RECTORY object.

Oracle9i: Program with PL/SQL 15-10

Guidelines for Creating DI RECTORY
Objects

®* Do not create DI RECTORY objects on paths with
database files.

®* Limit the number of people who are given the
following system privileges:
— CREATE ANY DI RECTORY
— DROP ANY DI RECTORY

e All DI RECTORY objects are owned by SYS.

* Create directory paths and properly set
permissions before using the DI RECTORY object

so that the Oracle server can read the file.

‘ 15-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Creating Di r ect or y Objects
To associate an operating system fileto a BFI LE, you should first create a DI RECTORY object that is
an aliasfor the full pathname to the operating system file.
Create DI RECTORY objects by using the following guiddlines:

» Directories should point to paths that do not contain database files, because tampering with these
files could corrupt the database. Currently, only the READ privilege can be given for a
DI RECTORY object.

» Thesystem privileges CREATE ANY DI RECTCORY and DROP ANY DI RECTORY should be
used carefully and not granted to users indiscriminately.
* DI RECTORY objects are hot schema objects; all are owned by SYS.

» Createthe directory paths with appropriate permissions on the OS prior to creating the
DI RECTORY object. Oracle does not create the OS path.

If you migrate the database to a different operating system, you may need to change the path value of the
DI RECTORY object.

The DI RECTORY object information that you create by using the CREATE DI RECTCORY command is
stored in the data dictionary views DBA DI RECTORI ES and ALL_DI RECTCORI ES.

Oracle9i: Program with PL/SQL 15-11

Managing BFI LEs

®* Create an OS directory and supply files.

®* Create an Oracle table with a column that holds
the BFI LE data type.

®* Create a DI RECTORY object.

* Grant privileges to read the DI RECTORY object to
users.

* Insert rows into the table by using the BFI LENAME
function.

* Declare and initialize a LOB locator in a program.
* Read the BFI LE.

‘ 15-12 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Manage BFI LEs
Use the following method to manage the BFI LE and DI RECTCRY objects:

1. Createthe OS directory (as an Oracle user) and set permissions so that the Oracle server can
read the contents of the OS directory. Load files into the the OS directory.

Create atable containing the BFI LE data typein the Oracle server.
Create the DI RECTORY object.
Grant the READ privilegetoiit.

Insert rows into the table using the BFI LENANME function and associate the OS files with the
corresponding row and column intersection.

Declareand initialize the LOB locator in a program.
Sdect the row and column containing the BFI LE into the LOB locator.

8. Read the BFI LE with an OCI or aDBMS_L OB function, using the locator as areference to
thefile

o 0D

N o

Oracle9i: Program with PL/SQL 15-12

Preparing to Use BFI LES

®* Create or modify an Oracle table with a column
that holds the BFI LE data type.

ALTER TABLE enpl oyees
ADD enp_vi deo BFI LE;

* Create a DIl RECTORY object by using the CREATE
DI RECTORY command.

CREATE DI RECTORY dir _name
AS os_pat h;

* Grant privileges to read the DI RECTORY object to
users.

GRANT READ ON DI RECTORY dir_nane TO
user | rol e| PUBLI C,

‘ 15-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Preparing to Use BFI LEs

In order to use a BFI LE within an Oracletable, you need to have a table with a column of BFI LE type. For
the Oracle server to access an external file, the server needs to know the location of the file on the operating
system. The DI RECTORY object provides the means to specify the location of the BFI LESs. Usethe
CREATE DI RECTORY command to specify the pointer to the location where your BFI LEs are stored. You
need the CREATE ANY DI RECTORY privilege.

Syntax Definition: CREATE DI RECTORY di r _nanme AS os_pat h;
Where: di r _nane isthe name of the directory database object
os_path isthe location of the BFI LEs
Thefollowing commands set up a pointer to BFI LES in the system directory / $HOVE/ LOG_FI LES and
give users the privilege to read the BFI LEs from the directory.

CREATE OR REPLACE DI RECTORY |l og_files AS '/$HOWE/ LOG FILES ;
GRANT READ ON DI RECTORY | og_files TO PUBLIC;

Directory created.
Grant succeeded.

In a session, the number of BFI LESthat can be opened in one session is limited by the parameter
SESSI ON_ MAX_OPEN_FI LES. This parameter isset inthei ni t . or a file Itsdefault valueis 10.

Oracle9i: Program with PL/SQL 15-13

The BFI LENANME Function

Use the BFI LENAME function to initialize a BFI LE
column.

FUNCTI ON BFI LENAME (directory_alias I N VARCHARZ,
filename I N VARCHAR?2)

RETURN BFI LE;

‘ 15-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The BFI LENAME Function

BFI LENAME isabuilt-in function that initializes a BFI LE column to point to an external file. Use the
BFI LENAME function as part of an | NSERT statement to initialize a BFI LE column by associating it
with a physical filein the server file system. You can use the UPDATE statement to change the reference
target of the BFI LE. A BFI LE can beinitialized to NULL and updated later by using the BFI LENAVE
function.

Syntax Definitions
Where: directory_alias is the name of the DI RECTORY database object

filenane is the name of the BFI LE to be read
Example

UPDATE enpl oyees
SET enp_video = BFI LENAME(' LOG FILES', 'King.avi')
WHERE enpl oyee_id = 100;
Once physical files are associated with records using SQL DML, subsequent read operations on the
BFI LE can be performed using the PL/SQL DBM5 L OB package and OCI. However, thesefiles are
read-only when accessed through BFI LEs, and so they cannot be updated or deeted through BFI LEs.

Oracle9i: Program with PL/SQL 15-14

Loading BFI LEs

CREATE OR REPLACE PROCEDURE | oad_enp_bfile
(p_file_loc INVARCHAR2) IS
v file BFI LE;
v_filenane VARCHAR2(16);
CURSOR enp_cursor |S
SELECT first_name FROM enpl oyees
WHERE departnment _id = 60 FOR UPDATE;

BEG N
FOR enp_record I N enp_cursor LOOP
v_filename := enp_record.first_name || '.bnp';
v file := pfile loc, v_filenane);
DBVS LOB. v file);

UPDATE enpl oyees SET enp_video = v_file
WHERE CURRENT OF enp_cursor;

DBMS_OUTPUT. PUT_LI NE(' LOADED FILE: '||v_fil ename
|| ' SIZE: ' || [DBVE_LOB. GETLENGTH{V_file));
[DBVE_LOB. FI LECLCSE[v_file);
END LOOP,

END | oad_enp_bfil e;
/

‘ 15-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Loading BFI LEs
Example
Load a BFI LE pointer to an image of each employeeinto the EMPLOYEES table by using the DBMS_L OB
package. Theimages are. bnp filesstored inthe/ honme/ LOG_FI LES directory.
Executing the procedure yields the following results:
EXECUTE | oad_enp_bfile(' LOG FI LES')

LOADED FILE: Alexander binp SIZE: 22358
LOADED FILE: Bruce bmp SIZE: 108052
LOATED FILE: Dawd bmp SIZE: 78736
LOADED FILE: Valh bmp SIZE: 373102
LOADED FILE: Diana brnp SIZE: 78736
PLAZQL procedure successfully completed.

Oracle9i: Program with PL/SQL 15-15

Loading BFI LEs

Use the DBMS LOB. FI LEEXI STS function to vefiry

that the file exists in the operating system. The function
returns O if the file does not exist, and returns 1 if the
file does exist.

CREATE OR REPLACE PROCEDURE | oad_enp_bfile
(p_file_loc I N VARCHAR2)
IS
v _file BFI LE; v_fil ename VARCHAR2(16) ;
v_fil e exists BOOLEAN,
CURSOR enp_cursor 1S ...

BEG N
FOR enp_record I N enp_cursor LOOP
v_filenanme := enp_record.first_nanme || '.bnmp';

v file := BFILENAME (p_file_loc, v_filename);

v file exists := |(DBMS LOB. FI LEEXI ST§[v file) = 1);

IF v file exists THEN
DBVS _LOB. FI LEOPEN (v_file);

‘ 15-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using DBVS_LOB. FI LEEXI STS

This function finds out whether agiven BFI LE locator points to afile that actually exists on the server's
file system. Thisis the specification for the function:

Syntax Definitions
FUNCTI ON DBMS_LOB. FI LEEXI STS
(file_loc I N BFILE)
RETURN | NTEGER,
Where: file_loc is name of the BFI LE locator

RETURN | NTEGER returns O if the physical file does not exist
returns 1 if the physical file exists

If the FI LE_LOC parameter contains an invalid value, one of three exceptions may be raised.

In the example in the dide, the output of the DBMS_LOB. FI LEEXI STS function is compared with
value 1 and theresult is returned to the BOOLEAN variableV_FI LE_EXI STS.

Exception Name Description
NOEXI ST_DI RECTORY The directory does not exist.
NOPRI V_DI RECTORY Y ou do not have privileges for the directory.

I'NVALI D_DI RECTORY The directory was invalidated after the file was opened.

Oracle9i: Program with PL/SQL 15-16

Migrating from LONGto LOB

The Oracle9i server allows migration of LONGcolumns to
LOB columns.

e Data migration consists of the procedure to move
existing tables containing LONGcolumns to use LOBs.

ALTER TABLE [<schema>.] <tabl e_name>
MODI FY (<l ong_col _nanme> {CLOB | BLOB | NCLOB}

* Application migration consists of changing existing LONG
applications for using LOBs.

‘ 15-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Migrating from LONGto LOB
Oracledi Server supportsthe LONG-t 0- LOB migration using API.

Data migration: Where existing tables that contain LONG columns need to be moved to use LOB columns.
This can be done using the ALTER TABLE command. In Oracle8i, an operator named TO_LOB had to be
used to copy a LONGto aLOB. In Oracledi, this operation can be performed using the syntax shown in the
dide.
Y ou can use the syntax shown to:

e Modify a LONG columnto a CLOB or an NCLOB column

e Modify aLONG RAWcolumnto a BLOB column

The constraints of the LONG column (NULL and NOT- NULL are the only allowed constraints) are
maintained for the new LOB columns. The default value specified for the LONG column is also copied to
the new LOB column.

For example, if you had atable with the following definition:

CREATE TABLE Long_tab (id NUMBER, |ong col LONG;

you can changethe LONG_CCL columnin table LONG_TAB to the CLOB data type as follows:
ALTER TABLE Long_tab MODIFY (long_col CLOB);

For limitations on the LONG-to-L OB migration, refer to OracleQi Application Developer’s Guide - Large
Objects.
Application Migration: Where the existing L ONG applications change for using LOBs. Y ou can use SQL
and PL/SQL to access LONGs and LOBs. This API is provided for both OCI and PL/SQL.

Oracle9i: Program with PL/SQL 15-17

Migrating From LONGto LOB

* Implicit conversion: LONG (LONG RAW or a
VARCHAR2(RAW variable to a CLOB (BLOB) variable, and
vice versa

* Explicit conversion:
— TO _CLOB() converts LONG VARCHAR2, and CHARto CLOB
— TO BLOB() converts LONG RAWand RAWto BLOB

®* Function and Procedure Parameter Passing:
— CLOBs and BLOBs as actual parameters

— VARCHARZ2, LONG, RAW and LONG RAWare formal
parameters, and vice versa

e LOBdatais acceptable in most of the SQL and PL/SQL
operators and built-in functions

‘ 15-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Migrating from LONGto LOB (continued)

With the new LONG-to-LOB API introduced in Oracle9i, data from CLOB and BL OB columns can be
referenced by regular SQL and PL/SQL statements.

Implicit assignment and parameter passing: The LONG-to-L OB migration APl supports assigning a
CLOB (BLOB) variableto a LONG (LONG RAW or a VARCHAR2 (RAW variable, and vice versa.

Explicit conversion functions: In PL/SQL, the following two new explicit conversion functions have
been added in Oracle9i to convert other data types to CLOB and BLCOB as part of LONG-to-LOB

migration:
e TO CLOB() converts LONG, VARCHARZ, and CHAR to CLOB
e TO BLOB() converts LONG RAWand RAWto BLOB

TO _CHAR() isenabledto convert a CLOB to a CHAR type.

Function and procedure parameter passing: This allows all the user-defined procedures and functions to
use CLOBs and BLOBs as actual parameters where VARCHAR2, LONG, RAW and L ONG RAWare formal
parameters, and vice versa.
Accessing in SQL and PL/SQL built-in functions and operators: A CLOB can be passed to SQL and
PL/SQL VARCHAR2 built-in functions, behaving exactly like a VARCHAR2. Or the VARCHAR2
variable can be passed into DBMS_LOB APIs acting like a LOB locator.
These details are discussed in detail later in this lesson.
For more information, refer to “Migrating from LONGsto LOBs” in Oracle9Qi Application Developer’s
Guide - Large Objects (LOBs).

Oracle9i: Program with PL/SQL 15-18

The DBMS _LOB Package

* Working with LOB often requires the use of the
Oracle-supplied package DBVS LOB.

e DBMS LOB provides routines to access and
manipulate internal and external LOBs.

®* Oracle9i enables retrieving LOB data directly using
SQL, without using any special LOB API.

* In PL/SQL you can define a VARCHAR2 for a CLOB
and a RAWfor BLOB.

‘ 15-19 Copyright © Oracle Corporation, 2001. All rights reserved.

The DBMS_LOB Package
In releases prior to Oracle9i, you need to use the DBMS L OB package for retrieving data from LOBs.

To create the DBMS_LOB package, thedbmrsl ob. sql and pr vt | ob. pl b scripts must be executed as
SYS. Thecat proc. sqgl script executes the scripts. Then users can be granted appropriate privileges to
use the package.

The package does not support any concurrency control mechanism for BFI LE operations.

The user is responsible for locking the row containing the destination internal LOB before calling any
subprograms that involve writing to the LOB value. These DBMS L OB routines do not implicitly lock the
row containing the LOB.

Two constants are used in the specification of procedures in this package: LOBMAXSI ZE and

FI LE_READONLY. These constants are used in the procedures and functions of DBMS L OB; for
example, you can use them to achieve the maximum possible leve of purity so that they can be usedin
SQL expressions.

Using the DBMS_L OB Routines

Functions and procedures in this package can be broadly classified into two types. mutators or observers.
Mutators can modify LOB values, whereas observers can only read L OB values.

» Mutators: APPEND, COPY, ERASE, TRl M WRI TE, FI LECLOSE, FI LECLOSEALL, and
FI LEOPEN

» Observers: COVPARE, FI LEGETNAME, | NSTR, GETLENGTH, READ, SUBSTR, FI LEEXI STS,
and FI LEI SOPEN

Oracle9i: Program with PL/SQL 15-19

‘ 15-20 Copyright © Oracle Corporation, 2001. All rights reserved.

The DBMS LOB Package

* Modify LOB values:

APPEND, COPY, ERASE, TRI M WRI TE, LOADFROVFI LE
* Read or examine LOB values:

GETLENGTH, | NSTR, READ, SUBSTR
® Specific to BFI LEs:

FI LECLOSE, FI LECLOSEALL, FI LEEXI STS,
FI LEGETNAME, FI LEI SOPEN, FI LEOPEN

The DBMS_LOB Package (continued)

APPEND Append the contents of the source LOB to the destination LOB
CcoPY Copy al or part of the source LOB to the destination LOB
ERASE Eraseall or part of aLOB

LOADFROVFI LE |Load BFI LE datainto an internal LOB

TRIM Trim the LOB value to a specified shorter length

VWRI TE Write data to the LOB from a specified offset

GETLENGTH Get the length of the LOB value

I NSTR Return the matching position of the nth occurrence of the pattern in the LOB
READ Read data from the LOB starting at the specified offset
SUBSTR Return part of the LOB value starting at the specified offset

FI LECLCSE Close thefile

FI LECLOSEALL (Close all previousy opened files

FI LEEXI STS Check if the file exists on the server

FI LEGETNAME |Get the directory alias and file name

FI LElI SOPEN Check if the file was opened using the input BFI LE locators
FI LEOPEN Open afile

Oracle9i: Program with PL/SQL 15-20

The DBMS _LOB Package

® NULL parameters get NULL returns.

* Offsets:
— BLOB, BFI LE: Measured in bytes
— CLOB, NCLOB: Measured in characters

®* There are no negative values for parameters.

‘ 15-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_LOB Routines

All functionsin the DBMS L OB package return NULL if any input parameters are NULL . All mutator
procedures in the DBMS L OB package raise an exception if the destination LOB /BFI LE isinput as NULL.

Only positive, absolute offsets are allowed. They represent the number of bytes or characters from the
beginning of LOB data from which to start the operation. Negative offsets and ranges observed in SQL

string functions and operators are not allowed. Corresponding exceptions are raised upon violation. The
default value for an offset is 1, which indicates the first byte or character in the LOB value.

Similarly, only natural number values are allowed for the amount (BUFSI Z) parameter. Negative values
arenot allowed.

Oracle9i: Program with PL/SQL 15-21

DBVS_LOB. READ and DBVS_LOB. WRI TE

PROCEDURE READ (
| obsrc I N BFI LE| BLOB| CLOB ,
amount | N OUT BI NARY_| NTECER,
of fset I N I NTEGER,
buf fer OUT RAW VARCHARZ)

PROCEDURE WRI TE (
| obdst | N OQUT BLOB| CLOB,
amount | N OUT BI NARY_| NTECER,
offset ININTEGER : = 1,
buffer N RAWVARCHAR2) -- RAWfor BLOB

‘ 15-22 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS_LOB. READ

Call the READ procedure to read and return piecewise a specified AMOUNT of data from a given LOB,
starting from OFFSET. An exception is raised when no more data remains to be read from the source
LOB. The value returned in AMOUNT will be less than the one specified, if the end of the LOB isreached
bef ore the specified number of bytes or characters could be read. In the case of CLOBS, the character set of
datain BUFFER is the same as that in the LOB.

PL/SQL allows a maximum length of 32767 for RAWand VARCHAR2 parameters. Make sure the

allocated system resources are adequate to support these buffer sizes for the given number of user
sessions. Otherwise, the Oracle server raises the appropriate memory exceptions.

Note: BLOB and BFI LE return RAW the others return VARCHAR2.

DBVS_LOB. WRI TE
Call the WRI TE procedure to write piecewise a specified AMOUNT of datainto a given LOB, from the
user-specified BUFFER, starting from an absolute OFFSET from the beginning of the LOB value.

Make sure (especially with multibyte characters) that the amount in bytes corresponds to the amount of
buffer data. WRI TE has ho means of checking whether they match, and will write AMOUNT bytes of the
buffer contents into the LOB.

Oracle9i: Program with PL/SQL 15-22

Adding LOB Columns
to a Table

ALTER TABLE enpl oyees ADD
(resune CLOB,
pi cture BLOB) ;
Table altered.

‘ 15-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding LOB Columns to a Table

L OB columns are defined by way of SQL data definition language (DDL), asinthe ALTER TABLE
statement in the slide. The contents of a LOB columnis stored in the LOB segment, whereas the column in
the table contains only a reference to that specific storage area, called the LOB locator. In PL/SQL you can
define avariable of type LOB, which contains only the value of the LOB locator.

Oracle9i: Program with PL/SQL 15-23

Populating LOB Columns

Insert arow into a table with LOB columns:

I NSERT | NTO enpl oyees (enpl oyee_id, first_nane,
| ast _nanme, emmil, hire_date, job_id,
sal ary, resune, picture)
VALUES (405, 'Marvin', "Ellis", "MELLIS , SYSDATE,
" AD_ASST', 4000, EMPTY_CLOB(), NULL);

1 rew created.

Initialize a LOB column using the EMPTY_BLOB() function:

UPDATE enpl oyees

SET resune = "Date of Birth: 8 February 1951',
pi cture = EMPTY_BLOB()

WHERE enpl oyee_id = 405;

1 row updated.

‘ 15-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Populating LOB Columns

You can insert avalue directly into a LOB column by using host variablesin SQL or in PL/SQL,
3GL-embedded SQL, or OCI.

Y ou can use the special functions EMPTY_BLOB and EMPTY_CLOB in | NSERT or UPDATE statements
of SQL DML toinitializea NULL or non-NULL internal LOB to empty. These are available as special
functionsin Oracle SQL DML, and are not part of the DBV5 L OB package.

Before you can start writing data to aninternal LOB using OCI or the DBMS_ L OB package, the LOB
column must be made nonnull, that is, it must contain alocator that points to an empty or populated LOB
value. You can initialize a BLOB column's value to empty by using the function EMPTY_BLOB in the
VALUES clause of an | NSERT statement. Similarly, aCLOB or NCLOB column's value can be initialized
by using the function EMPTY_CLCB.

Theresult of using the function EMPTY_CLOB() or EMPTY_BLOB() meansthat the LOB isinitialized,
but not populated with data. To populate the LOB column, you can use an update statement.

You can use an | NSERT statement to insert a new row and populate the LOB column at the sametime.

When you create a LOB instance, the Oracle server creates and places a locator to the out-of-line LOB
valuein the LOB column of a particular row in thetable. SQL, OCI, and other programmatic interfaces
operate on LOBs through these locators.

Oracle9i: Program with PL/SQL 15-24

Populating LOB Columns (continued)

The EMPTY_B/ CLOB() function can be used asa DEFAULT column constraint, asin the example
below. Thisinitializes the LOB columns with locators.

CREATE TABLE enp_hiredata
(enpl oyee_id NUMBER(6) ,
first_name VARCHAR2(20) ,
| ast _nane VARCHAR2(25) ,
resune CLOB DEFAULT EMPTY_CLOB(),
pi cture BLOB DEFAULT EMPTY_BLOB());

Table created.

Oracle9i: Program with PL/SQL 15-25

Updating LOB by Using SQL

UPDATE CLOB column

UPDATE enpl oyees
SET resune = 'Date of Birth: 1 June 1956’
WHERE enpl oyee id = 170;

1 row updated.

‘ 15-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating LOB by Using SQL

Y ou can update a LOB column by setting it to another LOB value, to NULL, or by using the empty
function appropriate for the LOB data type (EMPTY_CLOB() or EMPTY_BLOB()). You can update
the LOB using a bind variable in embedded SQL, the value of which may be NULL, empty, or
populated. When you set one LOB equal to another, a new copy of the LOB valueis created. These
actions do not require a SELECT FOR UPDATE statement. Y ou must lock the row prior to the update
only when updating a piece of the LOB.

Oracle9i: Program with PL/SQL 15-26

Updating LOB by Using DBMS LOB in

PL/SQL
DECLARE
| obl oc CLOB; -- serves as the LOB | ocator
t ext VARCHAR2(32767) : = Resi gned: 5 August 2000';
amount NUMBER ; -- anmount to be witten
of fset | NTEGER; -- where to start witing
BEG N

SELECT resume | NTO | obl oc

FROM enpl oyees

WHERE enpl oyee id = 405 FOR UPDATE;

of fset :=|DBMS_LOB. GETLENGTH(I obl oc)| + 2;

anount := length(text);
|DBI\/S_L(]3. VR TE|(I obl oc, anount, offset, text);
t ext := ' Resigned: 30 Septenber 2000';

SELECT resume | NTO | obl oc
FROM enpl oyees
WHERE enpl oyee id = 170 FOR UPDATE;

anount := length(text);
[DBVS_LOB. WRI TEAPPEND[| obl oc, anount, text);
COW T;

END;

‘ 15-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating LOB by Using DBVMS_LOBin PL/SQL
In the example in the dide, the LOBL OC variable serves as the LOB locator, and the AMOUNT variableis
set to the length of the text you want to add. The SELECT FOR UPDATE statement locks the row and
returns the LOB locator for the RESUME L OB column. Finally, the PL/SQL package procedure WRI TE is

called to write the text into the LOB value at the specified offset. WRI TEAPPEND appends to the existing
LOB value.

The exampl e shows how to fetch a CLOB column in rel eases before Oracl€9i. In those rd eases, it was not
possibleto fetch a CLOB column directly into a character column. The column value needed to be bound
to a LOB locator, which is accessed by the DBMS_ L OB package. An example later in this |esson shows
that you can directly fetch a CLOB column by binding it to a character variable.

Note: In versions prior to Oracledi, Oracle did not allow LOBs in the WHERE clause of UPDATE and
SELECT. Now SQL functions of LOBs are allowed in predicates of WHERE. An exampleis shown later in
this lesson.

Oracle9i: Program with PL/SQL 15-27

Selecting CLOB Values by Using SQL

SELECT enpl oyee_id, last_nanme , resunme -- CLOB
FROM enpl oyees
WHERE enpl oyee id IN (405, 170);

[EMPLOYEE ID [LAST NAME | RESUME
| 170 |Fox \Diate of Birth: 1 June 1956 Resigned = 30 Septermber 2000
| 405 |Ellis \Date of Birth: 8 February 1951 Resigned = 5 August 2000

‘ 15-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values by Using SQL

It is possible to see the datain a CLOB column by using a SELECT statement. It is not possibleto
seethe datain a BLOB or BFI LE column by using a SELECT statement in iSQL*Plus. Y ou haveto
use atoal that can display binary information for a BLOB, aswell as the relevant software for a

BFI LE; for example, you can use Oracle Forms.

Oracle9i: Program with PL/SQL 15-28

Selecting CLOB Values by Using DBMS LOB

e DBMS LOB. SUBSTR(lob_column, no_of chars, starting)
e DBMS LOB. I NSTR (lob_column, pattern)

SELECT DBMS_LOB. SUBSTR (resune, 5, 18),
DBVS _LOB. | NSTR (resune,’ = ")

FROM enpl oyees

WHERE enployee id IN (170, 405);

| DBMS_LOB.SUBSTR(RESUMES5,18) | DBMS_LOB.INSTR(RESUME,-)
|June | 36
[Febru | 40

‘ 15-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values by Using DBMS _LOB
DBVS_LOB. SUBSTR

Use DBMS LOB. SUBSTRto display part of aLOB. It is similar in functionality to the SQL function
SUBSTR.

DBVS_LOB. | NSTR

Use DBMS LOB. | NSTRto search for information within the LOB. This function returns the
numerical position of the information.

Note: Starting with Oraclefi, you can also use SQL functions SUBSTR and | NSTRto perform the
operations shown in the slide.

Oracle9i: Program with PL/SQL 15-29

Selecting CLOB Values in PL/SQL

DECLARE
t ext VARCHAR2(4001);
BEG N
SELECT [resume | NTO text |
FROM enpl oyees
WHERE enpl oyee_id = 170;
DBVS_QUTPUT. PUT_LI NE("text is: "|| text);
END,;
/

text is: Date of Birth: 1 June 1956 Resigned = 30 September 2000
PLAEQL procedure successflly completed.

‘ 15-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values in PL/SQL

The dlide shows the code for accessing CL OB values that can be implicitly converted to VARCHARZ in
Oracledi. The value of the column RESUME, when selected into a VARCHARZ variable TEXT, is
implicitly converted.

In prior releases, to access a CLOB column, first you must to retrieve the CLOB column value into a
CL OB variable and specify the amount and offset size. Then you use the DBMS_ L OB package to read the
selected value. The codeusing DBMS_LCB is as follows:
DECLARE
rl ob cl ob;
t ext VARCHAR2(4001);
am nunber := 4001;
of fset nunber := 1;
BEG N
SELECT resune INTO rl ob
FROM enpl oyees
WHERE enpl oyee id = 170;
DBMS LOB. READ(rl ob, amt, offset, text);
DBMS_OUTPUT. PUT_LI NE('text is: "|| text);
END;
/

text 13 Date of Bith: 1 June 1956 Eesigned = 30 September 2000
PLAZQL procedure successfully completed.

Oracle9i: Program with PL/SQL 15-30

Removing LOBs

Delete a row containing LOBs:

DELETE
FROM enpl oyees
WHERE enpl oyee_id = 405;

1 row deleted.

Disassociate a LOB value from arow:

UPDATE enpl oyees
SET resunme = EMPTY_CLOB()
WHERE enpl oyee_id = 170;

1 row updated.

‘ 15-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing LOBs

A LOB instance can be dd eted (destroyed) using appropriate SQL DML gtatements. The SQL statement
DELETE deletes arow and its associated internal LOB value. To preserve the row and destroy only the
reference to the LOB, you must update the row, by replacing the LOB column value with NULL or an
empty string, or by using the EMPTY _B/CLOB() function.

Note: Replacing a column value with NULL and using EMPTY _B/CLOB are not the same. Using NULL
sets the value to null, using EMPTY _B/CL OB ensures there is nothing in the column.

A LOB is destroyed when the row containing the LOB column is deleted when the table is dropped or
truncated, or implicitly when all the LOB data is updated.

Y ou must explicitly remove the file associated with a BFI LE using operating system commands.
To erase part of an internal LOB, you can use DBVS_LOB. ERASE.

Oracle9i: Program with PL/SQL 15-31

Temporary LOBs

® Temporary LOBs:

— Provide an interface to support creation of LOBs
that act like local variables

— Can be BLOBs, CLOBs, or NCLOBs

— Are not associated with a specific table

— Are created using DBVMS_LOB. CREATETEMPORARY
procedure

— Use DBMS LOBroutines
®* The lifetime of a temporary LOBis a session.

* Temporary LOBs are useful for transforming data
in permanent internal LOBs.

‘ 15-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Temporary LOBs

Temporary LOBs provide an interface to support the creation and deletion of LOBs that act likelocal
variables. Temporary LOBs can be BLOBs, CLOBs, or NCLOBs.

Features of temporary LOBs:
» Dataisstored in your temporary tablespace, not in tables.

» Temporary LOBs arefaster than persistent LOBs because they do not generate any redo or rollback
information.

» Temporary LOBs lookup is localized to each user’s own session; only the user who creates a
temporary LOB can access it, and all temporary LOBs are deleted at the end of the session in
which they were created.

* You can create atemporary LOB using DBVS_LOB. CREATETEMPORARY.

Temporary LOBs are useful when you want to perform some transformational operation on a LOB, for
example, changing an image type from GIF to JPEG. A temporary LOB is empty when created and does
not support the EMPTY_B/ CLOB functions.

Use the DBMS_ L OB package to use and manipulate temporary LOBs.

Oracle9i: Program with PL/SQL 15-32

Creating a Temporary LOB

PL/SQL procedure to create and test atemporary LOB:

CREATE OR REPLACE PROCEDURE | sTenmpLOBOpen
(p_lob_loc IN QUT BLOB, p_retval OUT | NTECER)

-- create a tenporary LOB
DBMS_LOB. CREATETEMPORARY (p_l ob_l oc, TRUE);
-- see if the LOB is open: returns 1 if open

p_retval := DBVS_LOB.|SOPEN (p_lob_loc);
DBMS_QUTPUT. PUT_LINE (' The file returned a val ue
)| p_retval);

-- free the tenporary LOB
DBMS_LOB. FREETEMPORARY (p_l ob_I oc);
END,;
/

Procedure created.

‘ 15-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Temporary LOB

The examplein the slide shows a user-defined PL/SQL procedure, | sTenpLCOBQpen, that creates a
temporary LOB. This procedure accepts a LOB locator as input, creates atemporary LOB, opensit, and
tests whether the LOB is open.

Thel sTenpLOBOpen procedure uses the procedures and functions from the DBMS L OB package as
follows:

e The CREATETEMPORARY procedureis used to create the temporary L OB.
e Thel SOPEN function is used to test whether a LOB is open: this function returns the value 1 if
the LOB is open.

» The FREETEMPORARY procedure is used to free the temporary LOB; memory increases
incrementally as the number of temporary LOBs grows, and you can reuse temporary LOB space
in your session by explicitly freeing temporary LCOBs.

Oracle9i: Program with PL/SQL 15-33

Summary

In this lesson, you should have learned how to:

* I|dentify four built-in types for large objects: BLOB,
CLOB, NCLOB, and BFI LE

®* Describe how LOBs replace LONGand LONG RAW

®* Describe two storage options for LOBs:
— The Oracle server (internal LOBs)
— External host files (external LOBs)

* Usethe DBMS LOB PL/SQL package to provide
routines for LOB management

® Usetemporary LOBs in a session

‘ 15-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
There are four LOB data types:
e ABLOBisabinary large object.
A CLOBisacharacter large object.
e A NCLOB stores multibyte national character set data.
 ABFI LEisalarge object stored in a binary file outside the database.

LOBs can be stored internally (in the database) or externally (in an operating system file). Y ou can
manage L OBs by using the DBMS_ L OB package and its procedures.

Temporary LOBs provide an interface to support the creation and deletion of LOBs that act likelocal
variables.

Oracle9i: Program with PL/SQL 15-34

Practice 15 Overview

This practice covers the following topics:

* Creating object types, using the new data types
CLOB and BLOB

* Creating atable with LOB data types as columns

®* Using the DBMS _LOB package to populate and
interact with the LOB data

‘ 15-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 15 Overview

In this practice you create a table with both BLOB and CLOB columns. Then, you use the DBMS L OB
package to populate the table and manipulate the data.

Oracle9i: Program with PL/SQL 15-35

Practice 15
1. Createatable called PERSONNEL by executing the script filel ab15 1. sqgl . Thetable contains
the following attributes and data types:

Column Name Data type Length
I D NUMBER 6

[ast _name VARCHAR2 35
revi ew CLOB N/A
picture BLOB N/A

2. Insert two rows into the PERSONNEL table, one each for employees 2034 and 2035. Use the empty
function for the CLOB, and provide NULL asthe value for the BLOB.

3. Examineand executethe script | ab15 3. sql . The script creates a table named REVI EW TABLE.
This table contains annual review information for each employee. The script also contains two
statements to insert review details for two employees.

4. Update the PERSONNEL table.

a. Populate the CLOB for thefirst row, using the following subquery in a SQL UPDATE statement:
SELECT ann_revi ew
FROM review table
WHERE enpl oyee id = 2034,
b. Populate the CLOB for the second row, using PL/SQL and the DBMS_L CB package. Use the
following SELECT statement to provide a value.
SELECT ann_revi ew
FROM review table
WHERE enpl oyee id = 2035;

Oracle9i: Program with PL/SQL 15-36

Practice 15 (continued)
If you havetime

5. Create a procedure that adds a locator to a binary file into the Pl CTURE column of the COUNTRI ES
table. The binary fileis a picture of the country. The image files are named after the country I1Ds. You
need to load an image file locator into all rows in Europeregion (REA ON | D=1) inthe
COUNTRI ES table. The DI RECTORY object name that stores a pointer to the location of the binary
filesis called COUNTRY_PI C. This object is already created for you.

a. Usethe command beow to add the image column to the COUNTRI ES table (or use
| abl5 5 add. sql)

ALTER TABLE countries ADD (picture BFILE);

b. CreateaPL/SQL procedurecaled| oad _country_ i mage that reads a locator into

your picture column. Have the program test to seeif the file exists, using the function
DBVS_LOB. FI LEEXI STS. If thefileis not existing, your procedure should display a

message that the file can not be opened. Have your program report information about the
load to the screen.

c. Invoke the procedure by passing the name of the directory object COUNTRY_PI Cas
parameter. Note that you should pass the directory object in single quotation marks.

Sample output follows:

LOADING LOCATORS TO IMAGES.
LOADED LOCATOE TO FILE: BE tif SIZE: 7444
LOADED LOCATOE TO FILE: CH.uf 2IZE: 7444
LOADED LOCATOE TO FILE: DE uf SIZE: 7444
LOADED LOCATOE TO FILE: DE tf SIZE: 7444
LOADED LOCATOE TO FILE: FE of SIZE: 7444
LOADED LOCATOE TO FILE: IT of SIZE: 7444
LOADED LOCATOR TO FILE: WL tif SIZE: 7444
LOADED LOCATOE TO FILE: UE uf SIZE: 7444
TOTAL FILE: TPDATELD: 8

PLIZQL procedure successfully completed.

Oracle9i: Program with PL/SQL 15-37

Oracle9i: Program with PL/SQL 15-38

Creating Database Triggers

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

16-2

Describe different types of triggers
Describe database triggers and their use
Create database triggers

Describe database trigger firing rules
Remove database triggers

Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn how to create and use database triggers.

Oracle9i: Program with PL/SQL 16-2

Types of Triggers

A trigger:

* |IsaPL/SQL block or a PL/SQL procedure
associated with a table, view, schema, or the
database

* Executes implicitly whenever a particular event
takes place

® (Can be either:

— Application trigger: Fires whenever an event occurs
with a particular application

— Database trigger: Fires whenever a data event (such
as DML) or system event (such as logon or
shutdown) occurs on a schema or database

16-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Triggers

Application triggers execute implicitly whenever a particular data manipulation language (DML)
event occurs within an application. An example of an application that uses triggers extensively is one
devel oped with Oracle Forms Developer.

Database triggers execute implicitly when a data event such as DML on atable (an | NSERT,
UPDATE, or DELETE triggering statement), an | NSTEAD OF trigger on aview, or data definition
language (DDL) statements such as CREATE and ALTER areissued, no matter which user is
connected or which application is used. Database triggers also execute implicitly when some user
actions or database system actions occur, for example, when a user logs on, or the DBA shut downs
the database.

Note: Database triggers can be defined on tables and on views. If a DML operation isissued on a
view, thel NSTEAD OF trigger defines what actions take place. If these actions include DML

operations on tables, then any triggers on the base tables are fired.

Database triggers can be system triggers on a database or a schema. With a database, triggers fire for
each event for all users; with a schema, triggers fire for each event for that specific user.

This course covers creating database triggers. Creating database triggers based on system eventsis
discussed in the lesson “Mare Trigger Concepts.”

Oracle9i: Program with PL/SQL 16-3

Guidelines for Designing Triggers

* Design triggers to:

— Perform related actions

— Centralize global operations
* Do not design triggers:

— Where functionality is already built into the Oracle
server

— That duplicate other triggers

®* Create stored procedures and invoke them in a
trigger, if the PL/SQL code is very lengthy.

* The excessive use of triggers can result in
complex interdependencies, which may be difficult
to maintain in large applications.

16-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Designing Triggers

Use triggers to guarantee that when a specific operation is performed, related actions are
performed.

Use database triggers only for centralized, global operations that should be fired for the triggering
statement, regardless of which user or application issues the statement.

Do not define triggers to duplicate or replace the functionality already built into the Oracle
database. For example do not define triggers to implement integrity rules that can be done by using
declarative constraints. An easy way to remember the design order for abusiness ruleis to:

— Usebuilt-in constraints in the Oracle server such as, primary key, foreign key and so on

— Devedop adatabase trigger or develop an application such as a serviet or Enterprise
JavaBean (EJB) on your middletier

— Usea presentation interface such as Oracle Forms, dynamic HTML, Java ServerPages
(JSP) and so on, if you cannot develop your business rule as mentioned above, which might
be a presentation rule.

The excessive use of triggers can result in complex interdependencies, which may be difficult to
maintain in large applications. Only use triggers when necessary, and beware of recursive and
cascading effects.

If thelogic for thetrigger is very lengthy, create stored procedures with the logic and invoke them
in thetrigger body.

Note that database triggers fire for every user each time the event occurs on which thetrigger is
created.

Oracle9i: Program with PL/SQL 16-4

Database Trigger: Example

Application

I NSERT | NTO EMPLOYEES

EMPLOYEES table Y CHECK SAL trigger
| EMPLOYEEID | LAST NAME | JOB_ID | SALARY
| 100 [King AD_PRES | 24000
| 101 [Kochhar AD_WP | 17000
| 102 |De Haan AD_WP | 17000 >
| 103 [Hunold IT_PROG | 5000
I 104 | [Fenet l=T=-Talc I =hnn
16-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a Database Trigger

In this example, the database trigger CHECK _SAL checks salary values whenever any application tries
toinsert arow into the EMPLOYEES table. Values that are out of range according to the job category
can bergjected, or can be allowed and recorded in an audit table.

Oracle9i: Program with PL/SQL 16-5

Creating DML Triggers

A triggering statement contains:

* Trigger timing

For table: BEFORE, AFTER
For view: | NSTEAD OF

* Triggering event: | NSERT, UPDATE, or DELETE
* Table name: On table, view

* Trigger type: Row or statement
* VWHENclause: Restricting condition

* Trigger body: PL/SQL block

16-6

Copyright © Oracle Corporation, 2001. All rights reserved.

Database Trigger

Before coding the trigger body, decide on the values of the components of the trigger: the trigger
timing, the triggering event, and the trigger type.

Part

Description

Possible Values

Trigger timing When the trigger firesin relation to the BEFORE
triggering event AFTER
| NSTEAD OF
Triggering event Which data manipulation operation on the [| NSERT
table or view causes the trigger to fire UPDATE
DELETE
Trigger type How many times the trigger body Statement
executes Row

Trigger body

What action the trigger performs

Complete PL/SQL block

If multipletriggers are defined for atable, be aware that the order in which multiple triggers of the
sametypefireis arbitrary. To ensure that triggers of the same type are fired in a particular order,
consolidate the triggers into one trigger that calls separate procedures in the desired order.

Oracle9i: Program with PL/SQL 16-6

DML Trigger Components

Trigger timing: When should the trigger fire?

e BEFORE: Execute the trigger body before the
triggering DML event on a table.

* AFTER: Execute the trigger body after the
triggering DML event on a table.

®* | NSTEAD OF: Execute the trigger body instead of
the triggering statement. This is used for views
that are not otherwise modifiable.

16-7 Copyright © Oracle Corporation, 2001. All rights reserved.

BEFORE Triggers
This type of trigger is frequently used in the following situations:

» Todeermine whether that triggering statement should be allowed to complete. (This situation
enables you to eiminate unnecessary processing of the triggering statement and its eventual
rollback in cases where an exception is raised in the triggering action.)

» Toderive column values before completing atriggering | NSERT or UPDATE statement.
» Toinitialize global variables or flags, and to validate complex business rules.

AFTER Triggers
This type of trigger is frequently used in the following situations:

» Tocompletethetriggering statement before executing the triggering action.

» Topeform different actions on the same triggering statement if a BEFORE trigger is already

present.

| NSTEAD OF Triggers
This type of trigger is used to provide a transparent way of modifying views that cannot be modified
directly through SQL DML statements because the view is not inherently modifiable.
You can write | NSERT, UPDATE, and DEL ETE statements against the view. Thel NSTEAD OF
trigger works invisibly in the background performing the action coded in the trigger body directly on
the underlying tables.

Oracle9i: Program with PL/SQL 16-7

DML Trigger Components

Triggering user event: Which DML statement causes
the trigger to execute? You can use any of the

following:
* | NSERT
e UPDATE
e DELETE
16-8 Copyright © Oracle Corporation, 2001. All rights reserved.

The Triggering Event
Thetriggering event or statement can be an | NSERT, UPDATE, or DEL ETE statement on atable.

* When thetriggering event is an UPDATE statement, you can include a column list to identify

which columns must be changed to fire the trigger. You cannot specify a column list for an
| NSERT or for a DELETE statement, because they always affect entire rows.

UPDATE OF sal ary .

» Thetriggering event can contain one, two, or all three of these DML operations.
| NSERT or UPDATE or DELETE

| NSERT or UPDATE OF job_id .

Oracle9i: Program with PL/SQL 16-8

DML Trigger Components

Trigger type: Should the trigger body execute for each
row the statement affects or only once?

e Statement: The trigger body executes once for the
triggering event. This is the default. A statement
trigger fires once, even if no rows are affected at all.

* Row: The trigger body executes once for each row
affected by the triggering event. A row trigger is not
executed if the triggering event affects no rows.

16-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Statement Triggers and Row Triggers

Y ou can specify that the trigger will be executed once for every row affected by the triggering
statement (such as a multiple row UPDATE) or once for the triggering statement, no matter how many
rows it affects.

Statement Trigger
A statement trigger is fired once on behalf of the triggering event, even if no rows are affected at all.

Statement triggers are useful if the trigger action does not depend on the data from rows that are
affected or on data provided by the triggering event itself: for example, atrigger that performs a
complex security check on the current user.

Row Trigger

A row trigger fires each time the tableis affected by the triggering event. If the triggering event affects
no rows, arow trigger is not executed.

Row triggers are useful if the trigger action depends on data of rows that are affected or on data
provided by the triggering event itself.

Oracle9i: Program with PL/SQL 16-9

DML Trigger Components

Trigger body: What action should the trigger perform?

The trigger body is a PL/SQL block or acall to a
procedure.

‘ 16-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Body

Thetrigger action defines what needs to be done when the triggering event isissued. The PL/SQL block
can contain SQL and PL/SQL statements, and can define PL/SQL constructs such as variables, cursors,
exceptions, and so on. You can also call a PL/SQL procedure or a Java procedure.

Additionally, row triggers use correlation names to access the old and new column values of the row
being processed by thetrigger.

Note: Thesize of atrigger cannot be more than 32 K.

Oracle9i: Program with PL/SQL 16-10

Firing Sequence

Use the following firing sequence for a trigger on a
table, when a single row is manipulated:

DML statement

I NSERT | NTO departnents (department _id,
depart nment _nane, |ocation_id)
VALUES (400, ' CONSULTING , 2400);

1 row created.

Triggering action
—> BEFORE statement
LOCATION_ID trigger
1700
1800
1700

: : —> BEFORE row trigger
| 400 [CONSULTING | 2400 AFTER .
> row trigger
—> AFTER statement trigger

‘ 16-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Row or Statement Triggers

| DEPARTMENT_ID | DEPARTMENT NAME
| 10 |Administratiun

| 20 |Marketing
|

30 |F'urchasing

Create a statement trigger or arow trigger based on the requirement that the trigger must fire once for
each row affected by the triggering statement, or just once for the triggering statement, regardless of
the number of rows affected.

When the triggering data manipulation statement affects a single row, both the statement trigger and
the row trigger fire exactly once.

Example

This SQL statement does not differentiate statement triggers from row triggers, because exactly one
row isinserted into the table using this syntax.

Oracle9i: Program with PL/SQL 16-11

Firing Sequence

Use the following firing sequence for a trigger on a
table, when many rows are manipulated:
UPDATE enpl oyees

SET salary = salary * 1.1
WHERE departnment _id = 30;

& rows updated.
—> BEFORE statement trigger

| EMPLOYEE ID | LAST NAME | DEPARTMENT_ID > BEFORE row trigger
| 114 [Raphaely | a0 _

| 115 [Khoo | a1 —>AFTERTroOw trigger

| 116 |Baida | a0

| 17 [Tobias | ¥ > BEFORE row trigger
| 118 [Himuro | 0 AETER _

| 119 |Culmenares | a0 _) row trigger

—> AFTER statement trigger

‘ 16-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Row or Statement Triggers (continued)

When the triggering data manipulation statement affects many rows, the statement trigger fires exactly
once, and the row trigger fires once for every row affected by the statement.

Example

The SQL statement in the slide above causes arow-level trigger to fire a number of times equal to the
number of rows that satisfy the WHERE clause, that is, the number of employees reporting to

department 30.

Oracle9i: Program with PL/SQL 16-12

Syntax for Creating
DML Statement Triggers

Syntax:

CREATE [OR REPLACE] TRI GGER tri gger_nane
timng
eventl [OR event2 OR event 3]
ON tabl e_nane
trigger_body

Note: Trigger names must be unique with respect to
other triggers in the same schema.

‘ 16-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating a Statement Trigger

trigger nane Is the name of the trigger

timng Indicates the time when the trigger firesin relation to the
triggering event:

BEFORE

AFTER

event Identifies the data manipulation operation that causes the

trigger to fire:
| NSERT

UPDATE [OF col ummn]
DELETE

t abl e/ vi ew_nane | Indicates the table associated with the trigger

trigger body Isthe trigger body that defines the action performed by the
trigger, beginning with either DECLARE or BEG N, ending
with END, or acall to a procedure

Trigger names must be unique with respect to other triggers in the same schema. Trigger names do not
need to be unique with respect to other schema objects, such as tables, views, and procedures.

Using column names along with the UPDATE clause in the trigger improves performance, because the
trigger fires only when that particular column is updated and thus avoids unintended firing when any
other column is updated.

Oracle9i: Program with PL/SQL 16-13

Creating DML Statement Triggers

Example:

CREATE OR REPLACE TRI GGER secure_enp
BEFORE | NSERT ON enpl oyees
BEG N
| F (TO CHAR(SYSDATE, 'DY') IN ('SAT',"SUN)) OR
(TO_CHAR(SYSDATE, ' HH24: M ")
NOT BETWEEN ' 08: 00 AND ' 18: 00")
THEN RAI SE_APPLI CATI ON_ERROR (- 20500, ' You may
insert into EMPLOYEES table only
during business hours."');
END | F;
END;
/

Trgger created.

‘ 16-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating DML Statement Triggers
Y ou can create a BEFORE statement trigger in order to prevent the triggering operation from
succeeding if a certain condition is violated.
For example, create atrigger to restrict inserts into the EMPLOYEES table to certain business hours,
Monday through Friday.
If auser attempts to insert arow into the EMPLOYEES table on Saturday, the user sees the message,

the trigger fails, and the triggering statement is rolled back. Remember that the
RAI SE_APPLI CATI ON_ERRCRs a server-side built-in procedure that returns an error to the user

and causes the PL/SQL block to fail.

When a database trigger fails, the triggering statement is automatically rolled back by the Oracle
server.

Oracle9i: Program with PL/SQL 16-14

Testing SECURE_EMP

I NSERT | NTO enpl oyees (enpl oyee_id, |ast_nane,
first _nane, enmail, hire_date,
job_id, salary, departnent_id)

VALUES (300, 'Smith', 'Rob', 'RSM TH , SYSDATE,

"I T_PROG , 4500, 60);

IMESERT INTO emplovees (etmployee id, last name, first name, email,
*

EEEOCE at line 1

OFA-20500: You may insert inte EMPLOYEES table only during business hours.
CEA-06512 at "PLIQL SECTRE _EWME", line 4

OFA-04088: error dunng execution of trigger PLIQL.ZECTURE_EMT!

‘ 16-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

Insert arow into the EMPLOYEES table during nonbusiness hours. When the date and time are out of
the business timings specified in the trigger, you get the error message as shown in the slide.

Oracle9i: Program with PL/SQL 16-15

Using Conditional Predicates

CREATE OR REPLACE TRI GGER secure_enp
BEFORE | NSERT OR UPDATE OR DELETE ON enpl oyees
BEG N
IF (TO CHAR (SYSDATE, 'DY') IN ('SAT","SUN)) OR
(TO_CHAR (SYSDATE, 'HH24') NOT BETWEEN ' 08" AND ' 18')
THEN
| F | DELETI NG |THEN
RAI SE_APPLI CATI ON_ERROR (-20502,"' You nmay del ete from
EMPLOYEES t abl e only during business hours.');
ELSI F [NSERTI NG |JTHEN
RAI SE_APPLI CATI ON_ERROR (-20500, ' You nmay insert into
EMPLOYEES t abl e only during business hours.');
ELSI F |UPDATI NG (' SALARY") | THEN
RAI SE_APPLI CATI ON_ERROR (- 20503, "' You may update
SALARY only during business hours.");

ELSE
RAI SE_APPLI CATI ON_ERROR (- 20504, "' You may update
EMPLOYEES table only during normal hours.');
END | F;
END | F;
END;

‘ 16-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Combining Triggering Events

Y ou can combine several triggering events into one by taking advantage of the special conditional
predicates | NSERTI NG, UPDATI NG, and DELETI NGwithin thetrigger body.

Example

Create onetrigger to restrict all data manipulation events on the EMPLOYEES table to certain business
hours, Monday through Friday.

Oracle9i: Program with PL/SQL 16-16

Creating a DML Row Trigger

Syntax:

CREATE [OR REPLACE] TRI GGER tri gger_nane

timng

eventl [OR event2 OR event 3]
ON t abl e_nane

[REFERENCI NG OLD AS old | NEW AS new
FOR EACH ROW

[WHEN (condi tion)]
trigger_body

‘ 16-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating a Row Trigger

trigger_nane Is the name of the trigger
timng Indicates the time when the trigger firesin relation to the triggering event:
BEFORE
AFTER
| NSTEAD OF
event | dentifies the data mani pul ation operation that causes the trigger to fire:
| NSERT
UPDATE [OF col um]
DELETE
t abl e_nane Indicates the table associated with the trigger
REFERENCI NG Specifies correlation names for the old and new val ues of the current row

(The default values are OLD and NEW
FOR EACH ROW | Designates that the trigger is arow trigger

WHEN Specifies the trigger restriction; (This conditional predicate must be
enclosed in parenthesis and is evaluated for each row to determine whether
or not the trigger body is executed.)

trigger body Is the trigger body that defines the action performed by the trigger,
beginning with either DECLARE or BEG N, ending with END, or acall to a
procedure

Oracle9i: Program with PL/SQL 16-17

Creating DML Row Triggers

CREATE OR REPLACE TRI GCER restrict_salary
BEFORE | NSERT OR UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
BEG N
IF NOT (:NEWjob_id IN ('AD_PRES, '"AD VP'))
AND : NEW sal ary > 15000
THEN

RAI SE_APPLI CATI ON_ERROR (- 20202, ' Enpl oyee

cannot earn this anmount');
END | F;
END;

/

Trigger created.

‘ 16-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Row Trigger

Y ou can create a BEFORE row trigger in order to prevent the triggering operation from succeeding if a
certain condition is violated.

Create atrigger to allow only certain employees to be able to earn a salary of more than 15,000.
If auser attempts to do this, the trigger raises an error.

UPDATE enpl oyees

SET salary = 15500

WHERE | ast _nane = ' Russel |';

UPDATE EMFPLOYEES

*

EEEOE at line 1:

OEA-20202: Employvee can not earn this amount
OFA-06512: at "FLEQL EESTEICT SALARTY" line 5

DEA-D408E: error dunng execution of thgger TLEOL EESTEICT SATARTY

Oracle9i: Program with PL/SQL 16-18

Using CLD and NEWQualifiers

CREATE OR REPLACE TRI GGER audit _enp_val ues
AFTER DELETE OR | NSERT OR UPDATE ON enpl oyees
FOR EACH ROW
BEG N
I NSERT | NTO audit_enp_tabl e (user_nane, tinestanp,
id, old |ast_nane, new |ast nanme, old title,
new title, old_salary, new salary)
VALUES (USER SYSDATE, | OLD.enpl oyee_i dj
:OLD. I ast _nane|, || NEW | ast_nane], | OLD.j ob_i d|
:NEWjob_idj [OLD salaryj |: NEW sal ary|);

END;
/

Trigger created.

‘ 16-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using OLD and NEWQualifiers

Within a ROWtrigger, reference the value of a column before and after the data change by prefixing it
with the OLD and NEWqualifier.

Data Operation Old Value New Value

| NSERT NULL Inserted value
UPDATE V alue before update Value after update
DELETE Value before delete NULL

e TheOLDand NEWqualifiers are available only in ROMriggers.

» Prefix these qualifierswith a colon () in every SQL and PL/SQL statement.
» Thereisno colon () prefix if the qualifiers are referenced in the WHEN restricting condition.
Note: Row triggers can decrease the performance if you do alot of updates on larger tables.

Oracle9i: Program with PL/SQL 16-19

Using LD and NEWQualifiers:
Example Using Audit Enp Tabl e

I NSERT | NTO enpl oyees
(empl oyee_id, last_name, job_id, salary, ...)
VALUES (999, 'Tenp enp', 'SA REP', 1000, ...);

UPDATE enpl oyees
SET salary = 2000, last_name = 'Smth'
WHERE enpl oyee_id = 999;

1 row created.
1 row updated.

SELECT user _nane, tinestanp, ... FROM audit_enp_table

[USER_NAME [TIMESTAMP [ID [OLD_LAST N|NEW LAST N|OLD_TITLE [NEW TITLE [OLD_SALARY [NEW SALARY
IPLSGL a-sep01 || Tempemp | |sA REP | | 1000
IPLSOL [28-SEP-01 393 [Temp emp [Smith |sA REP [SA REP | 1000 | 2000

‘ 16-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using OLD and NEWQualifiers: Example Using AUDI T_EMP_TABLE

Create atrigger on the EMPLOYEES table to add rows to a user table, AUDI T_EMP_TABLE, logging
auser’s activity against the EMPLOYEES table. Thetrigger records the values of several columns both
before and after the data changes by using the OLD and NEWqualifiers with the respective column
name.

Thereis additional column COVMMENTS inthe AUDI T_EMP_TABLE that is not shown in this slide.

Oracle9i: Program with PL/SQL 16-20

Restricting a Row Trigger

CREATE OR REPLACE TRI GGER derive_comm ssi on_pct
BEFORE | NSERT OR UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
VWHEN |(NEWjob_id = ' SA REP'")

BEG N
I F 1 NSERTI NG

THEN : NEW conm ssi on_pct := 0;
ELSI F : OLD. conm ssion_pct IS NULL
THEN : NEW conmi ssi on_pct := 0;
ELSE
: NEW comm ssi on_pct : = :CLD. comm ssi on_pct + 0. 05;
END | F;

END;

/

Trigger created.

Example
To restrict the trigger action to those rows that satisfy a certain condition, provide a WHEN clause.

Create atrigger on the EMPLOYEES table to calculate an employee’s commission when arow is
added to the EMPLOYEES table, or when an employee’ s salary is modified.

The NEWqualifier cannot be prefixed with a colon in the WHEN clause because the WHEN clause is
outside the PL/SQL blocks.

Oracle9i: Program with PL/SQL 16-21

| NSTEAD OF Triggers
Application
[I NSERT | NTO nmy_vi ew
% | NSERT
TABLE1l
| NSTEAD OF >
Trigger
UPDATE
MY VI EW TABLEZ2
- >

‘ 16-22 Copyright © Oracle Corporation, 2001. All rights reserved.

| NSTEAD OF Triggers

Use | NSTEAD OF triggers to modify datain which the DML statement has been issued against an
inherently nonupdatable view. Thesetriggers are called | NSTEAD OF triggers because, unlike other
triggers, the Oracle server fires the trigger instead of executing the triggering statement. Thistrigger is
used to perform an | NSERT, UPDATE, or DELETE operation directly on the underlying tables.

You can write | NSERT, UPDATE, or DELETE statements against a view, and the | NSTEAD OF
trigger works invisibly in the background to make the right actions take place.

Why Use | NSTEAD CF Triggers?

A view cannot be modified by normal DML statements if the view query contains set operators, group
functions, clauses such as GROUP BY, CONNECT BY, START, the DI STI NCT operator, or joins.
For example, if aview consists of more than onetable, an insert to the view may entail an insertion
into one table and an update to ancther. So, you write an | NSTEAD OF trigger that fires when you
write an insert against the view. Instead of the original insertion, the trigger body executes, which
resultsin an insertion of data into one table and an update to another table.

Note: If aview isinherently updateable and has | NSTEAD CF triggers, the triggers take precedence.
| NSTEAD OF triggers arerow triggers.

The CHECK option for views is not enforced when insertions or updates to the view are performed by
using | NSTEAD CF triggers. The | NSTEAD OF trigger body must enforce the check.

Oracle9i: Program with PL/SQL 16-22

Creating an | NSTEAD OF Trigger

Syntax:

CREATE [OR REPLACE] TRI GGER trigger _nane
| NSTEAD OF
eventl [OR event2 OR event 3]
ON vi ew_nane
[REFERENCI NG OLD AS old | NEW AS new
[FOR EACH ROW
trigger _body

‘ 16-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating an | NSTEAD OF Trigger

trigger_nanme [|sthename of thetrigger.

INSTEAD OF Indicates that the trigger belongs to a view
event Identifies the data mani pul ation operation that causes the trigger
tofire:
| NSERT
UPDATE [OF col um]
DELETE
Vi ew_nane Indicates the view associated with trigger

REFERENCING | Specifies correlation names for the old and new val ues of the
current row (The defaults are OLD and NEW)

FOR EACH Designates the trigger to be arow trigger; | NSTEAD COF triggers
ROW can only be row triggers: if thisis omitted, the trigger is till
defined asarow trigger.

trigger body [|sthetrigger body that defines the action performed by the
trigger, beginning with either DECLARE or BEG N, and ending
with END or acall to a procedure

Note: | NSTEAD OF triggers can be written only for views. BEFORE and AFTER options are not
valid.

Oracle9i: Program with PL/SQL 16-23

Creating an | NSTEAD OF Trigger

Example:

Thefollowing example creates two new tables, NEW EMPS and NEW DEPTS, based on the
EMPLOYEES and DEPARTMENTS tables respectively. It also creates an EMP_DETAI LS view from
the EMPLOYEES and DEPARTMENTS tables. The example also creates an | NSTEAD COF trigger,
NEW EMP_DEPT. When arow isinserted into the EMP_DETAI LS view, instead of inserting the row
directly into the view, rows are added into the NEW EMPS and NEW DEPTS tables, based on the data
inthe | NSERT statement. Similarly, when arow is modified or deleted through the EMP_DETAI LS
view, corresponding rows in the NEW EMPS and NEW DEPTS tables are affected.

CREATE TABLE new _enps AS
SELECT enpl oyee_id, last_nane, salary, department _id,
email, job_id, hire date

FROM enpl oyees;
CREATE TABLE new depts AS

SELECT d. departnent _id, d.departnment_nane, d.location_id,
sun{e.sal ary) tot_dept_sal

FROM enpl oyees e, departnents d
WHERE e. departnent _id = d.departnent _id
GROUP BY d.departnent _id, d.departnment_nane, d.location_id,

CREATE VI EW enp_details AS
SELECT e. enpl oyee id, e.last_nane, e.salary, e.departnent_id,
e.email, e.job_id, d.departnent_name, d.location_id

FROM enpl oyees e, departnents d
WHERE e. departnent _id = d. departnent i d;

CREATE OR REPLACE TRI GGER new_enp_dept
| NSTEAD OF | NSERT OR UPDATE OR DELETE ON enp_detail s
FOR EACH ROW
BEG N
| F 1 NSERTI NG THEN
I NSERT | NTO new_enps

VALUES (: NEW enpl oyee id, :NEWI ast_nane, : NEWsal ary,
:NEW departnent _id, :NEWenail, :New job id, SYSDATE);

UPDATE new _depts
SET tot_dept_sal = tot_dept_sal + :NEWsalary
WHERE departnment _id = : NEW departnent i d;
ELSI F DELETI NG THEN
DELETE FROM new_enps
WHERE enpl oyee id = : QLD. enpl oyee_i d;
UPDATE new _depts
SET tot_dept_sal = tot_dept_sal - :COLD.sal ary
WHERE departnment _id = : OLD. departnent id;

Oracle9i: Program with PL/SQL 16-24

Creating an | NSTEAD OF Trigger (continued)
Example:

ELSI F UPDATI NG (' sal ary')

THEN
UPDATE new_enps
SET salary = :NEWsal ary
WHERE enpl oyee id = : QLD. enpl oyee_i d;
UPDATE new _depts
SET tot_dept_sal = tot _dept_sal + (:NEWsalary - :Q.D. sal ary)
WHERE departnment _id = : OLD. departnent id;

ELSI F UPDATI NG (' departnent _id')

THEN
UPDATE new_enps
SET departnent _id
WHERE enpl oyee i d
UPDATE new _depts
SET tot_dept_sal = tot_dept_sal - :COLD.sal ary
WHERE departnment _id = : OLD. departnent id;
UPDATE new _depts
SET tot_dept_sal = tot_dept_sal + :NEWsalary
WHERE departnment _id = : NEW departnent i d;

END | F;

END;
/

: NEW departnent _id
: OLD. enpl oyee_i d;

Note: This example is explained in the next page by using graphics.

Oracle9i: Program with PL/SQL 16-25

Creating an | NSTEAD OF Trigger

| NSERT into EMP_DETAI LS that is based on EMPLOYEES and
DEPARTMENTS tables

| NSERT | NTO enp_detail s(enpl oyee id, ...)
@ VALUES(9001, ' ABBOTT' , 3000, 10, ' abbott. mail.com,' HR_MAN);

[EMPLOYEE_ID |LAST_NAME [DEPARTMENT ID| EMAIL | JOB_
| NSTEAD OF | NSERT | 100 [King | 90 |SKING \AD_PRE
into EMP_DETAI LS — > | 101 [Kochhar | 90 [NKOCHHAR |[AD_wP

| 102 |De Haan | a0 |[LDEHAAN [AD_vP

‘ 16-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an | NSTEAD OF Trigger
You can create an | NSTEAD OF trigger in order to maintain the base tables on which a view is based.

Assume that an employee name will be inserted using the view EMP_DETAI LS that is created based
on the EMPLOYEES and DEPARTMENTS tables. Create a trigger that results in the appropriate

I NSERT and UPDATE to the base tables. The slide in the next page explains how an | NSTEAD OF
TRI GGER behavesin this situation.

Oracle9i: Program with PL/SQL 16-26

Creating an | NSTEAD OF Trigger

| NSERT into EMP_DETAI LS that is based on EMPLOYEES and
DEPARTMENTS tables
@ | NSERT | NTO enp_detail s(enpl oyee id, ...)

VALUES(9001, ' ABBOTT' , 3000, 10, ' abbott. mail.com ,' HR_MAN);

[EMPLOYEE_ID [LAST_NAME [DEPARTMENT ID| EMAIL | JOB_
I NSTEAD OF | NSERT | 100 [King | 50 |[SKING [aD_PRE
into EMP_DETAI LS — | 101 [Kochhar | 90 [MKOCHHAR |[AD_WP
| | 102 [De Haan | 90 LDEHAAN [AD_WP
@ | NSERT into UPDATE
NEW EMPS NEW DEPTS
[EMPLOYEE ID [LAST_NAME [SALARY DEPARTMENT ID| EMZ [DEPARTMENT_ID [DEPARTMENT NAME [TOT_DEPT_SA
| 100 [King [24000]| 90 [skiNG | 10 [Administration 540
| 101 Kochhar | 17000 || 90 [MKOCHE 20 |Marketing 19001
| 102 [De Haan | 17000 | 90 |LDEHA?2 | 30 [Purchasing | 3012
e | 40 |Human Resources | B500
[soo1 |aBBOTT | 3000 | 10 [abbott m} "

‘ 16-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an | NSTEAD OF Trigger

Because of the | NSTEAD OF TRI GGER on theview EMP_DETAI LS, instead of inserting the new
employee record into the EMPLOYEES table;

e Arow isinserted into the NEW EMPS table.

e TheTOTAL_DEPT_SAL column of the NEW DEPTS tableis updated. The salary value
supplied for the new employee is added to the existing total salary of the department to which
the new employee has been assigned.

Oracle9i: Program with PL/SQL 16-27

Differentiating Between Database Triggers
and Stored Procedures

Triggers Procedures

Defined with CREATE TRI GGER Defined with CREATE PROCEDURE

Data dictionary contains source | Data dictionary contains source code

code in USER_TRI GGERS in USER_SOURCE

Implicitly invoked Explicitly invoked

COW T, SAVEPQO NT, and COW T, SAVEPQO NT, and ROLLBACK
ROLLBACK are not allowed are allowed

‘ 16-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Triggers and Stored Procedures
There are differences between database triggers and stored procedures:

Database Trigger Stored Procedure

Invoked implicitly Invoked explicitly

COWM T, ROLLBACK, and COWMM T, ROLLBACK, and SAVEPO NT
SAVEPOI NT statements are not allowed statements are permitted within the procedure
within the trigger body. It is possible to body.

commit or rollback indirectly by calling a

procedure, but it is not recommended

because of side effects to transactions.

Triggers are fully compiled when the CREATE TRI GGER command is issued and the P codeis
stored in the data dictionary.

If errors occur during the compilation of atrigger, thetrigger is still created.

Oracle9i: Program with PL/SQL 16-28

Differentiating Between Database Triggers
and Form Builder Triggers

I NSERT | NTO EMPLOYEES

EMPLOYEES table

CHECK SAL trigger

Y

| EMPLOYEEID | LAST NAME | JOB_ID | SALARY
| 100 |King |AD_PRES | 24000
| 101 [Kochhar [aD_vP | 7000 ————>>
| 102 ||De Haan [aD_vP | 17000
| 103 [Hunold IT_PROG | 000 BEFORE
[104 [Errt T ooz I crnn

| NSERT

row

‘ 16-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Differences between a Database Trigger and a Form Builder Trigger
Database triggers are different from Form Builder triggers.

Database Trigger

Form Builder Trigger

Executed by actions from any database tool
or application

Executed only within a particular Form Builder
application

Always triggered by a SQL DML, DDL, or a
certain database action

Can be triggered by navigating from field to field, by
pressing a key, or by many other actions

I's distinguished as either a statement or row
trigger

Is distinguished as a statement or row trigger

Upon failure, causes the triggering statement
to roll back

Upon failure, causes the cursor to freeze and may
cause the entire transaction to roll back

Firesindependently of, and in addition to,
Form Builder triggers

Fires independently of, and in addition to, database
triggers

Executes under the security domain of the
author of the trigger

Executes under the security domain of the Form
Builder user

Oracle9i: Program with PL/SQL 16-29

Managing Triggers

Disable or reenable a database trigger:
'ALTER TRI GGER trigger_nane Di SABLE | ENABLE |

Disable or reenable all triggers for a table:
\ALTER TABLE tabl e_name DI SABLE | ENABLE ALL TRI GGERS \

Recompile a trigger for a table:
'ALTER TR GGER tri gger _name COMPI LE |

‘ 16-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Modes: Enabled or Disabled
* When atrigger isfirst created, it is enabled automatically.

» TheOracle server checks integrity constraints for enabled triggers and guarantees that triggers
cannot compromise them. In addition, the Oracle server provides read-consistent views for
gueries and constraints, manages the dependencies, and provides a two-phase commit process if
atrigger updates remote tables in a distributed database.

» Disable a specific trigger by using the ALTER TRI GGER syntax, or disable all triggerson a
table by using the ALTER TABLE syntax.

» Disableatrigger to improve performance or to avoid data integrity checks when loading
massive amounts of data by using utilities such as SQL*Loader. Y ou may also want to disable
the trigger when it references a database object that is currently unavailable, owing to afailed
network connection, disk crash, offline datafile, or offline tablespace.

Compile a Trigger
* Usethe ALTER TRI GGER command to explicitly recompile atrigger that isinvalid.

* Whenyou issue an ALTER TRI GGER statement with the COMPI LE option, the trigger
recompiles, regardless of whether it isvalid or invalid.

Oracle9i: Program with PL/SQL 16-30

DROP TRI GGER Syntax

To remove a trigger from the database, use the DROP
TRI GGER syntax:

‘ DROP TRI GGER tri gger _narne; ‘

Example:

DRCOP TRI GGER secur e_enp;

Tripger dropped.

Note: All triggers on a table are dropped when the
table is dropped.

‘ 16-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Triggers
When atrigger is no longer required, you can use a SQL statement in iSQL*Plusto drop it.

Oracle9i: Program with PL/SQL 16-31

Trigger Test Cases

* Test each triggering data operation, as well as
nontriggering data operations.

® Test each case of the WHEN clause.

® (Cause the trigger to fire directly from a basic data
operation, as well as indirectly from a procedure.

* Test the effect of the trigger upon other triggers.
* Test the effect of other triggers upon the trigger.

‘ 16-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Testing Triggers
» Ensurethat the trigger works properly by testing a number of cases separately.

e Take advantage of the DBMS_OUTPUT procedures to debug triggers. Y ou can also use the
Procedure Builder debugging tool to debug triggers. Using Procedure Builder is discussed in
Appendix F, “Creating Program Units by Using Procedure Builder.”

Oracle9i: Program with PL/SQL 16-32

Trigger Execution Model
and Constraint Checking

1. Execute all BEFORE STATEMENT triggers.
2. Loop for each row affected:

a. Execute all BEFORE ROMriggers.

b. Execute all AFTER ROMriggers.

3. Execute the DML statement and perform integrity
constraint checking.

4. Execute all AFTER STATEMENT triggers.

‘ 16-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Execution Model

A single DML statement can potentially fire up to four types of triggers: BEFORE and AFTER
statement and row triggers. A triggering event or a statement within the trigger can cause one or more
integrity constraints to be checked. Triggers can also cause other triggers to fire (cascading triggers).

All actions and checks done as aresult of a SQL statement must succeed. If an exception is raised
within atrigger and the exception is not explicitly handled, all actions performed because of the
original SQL statement are rolled back. This includes actions performed by firing triggers. This
guarantees that integrity constraints can never be compromised by triggers.

When atrigger fires, thetables referenced in thetrigger action may undergo changes by other users
transactions. In all cases, aread-consistent image is guaranteed for modified values the trigger needs
to read (query) or write (update).

Oracle9i: Program with PL/SQL 16-33

Trigger Execution Model and Constraint
Checking: Example

UPDATE enpl oyees SEr|depart ment _1d = 999|
WHERE enpl oyee_id = 170;
-- Integrity constraint violation error

CREATE OR REPLACE TRI GGER constr_enp_trig
AFTER UPDATE ON enpl oyees

FOR EACH ROW
BEG N

I NSERT | NTO departnents

VALUES (999, 'dept999', 140, 2400);

END;
/

UPDATE enpl oyees SEr|depart ment _1d = 999|
WHERE enpl oyee_id = 170;
-- Successful after trigger is fired

‘ 16-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Execution Model and Constraint Checking: Example

The examplein the dide explains a situation in which the integrity constraint can be taken care of by
using atrigger. Table EMPLOYEES has aforeign key constraint on the DEPARTMENT _| D column of
the DEPARTMENTS table.

In thefirst SQL statement, the DEPARTMVENT _| D of the employee with EMPLOYEE | D 170is
modified to 999.

Because such a department does not exist in the DEPARTMENTS table, the statement raises the
exception -2292 for the integrity constraint violation.

A trigger CONSTR_EMP_TRI Gis created that inserts a new department 999 into the DEPARTMVENTS
table.

When the UPDATE statement that modifies the department of employee 170 to 999 is issued, the

trigger fires. Then, the foreign key constraint is checked. Because the trigger inserted the department
999 into the DEPARTMENTS table, the foreign key constraint check is successful and thereis no

exception.

This process works with Oracle8i and later reeases. The example described in the slide produces a
run-time error in releases prior to Oracl€e8i.

Oracle9i: Program with PL/SQL 16-34

A Sample Demonstration for Triggers
Using Package Constructs

DML into AUDI T_EMP_TRI G VAR PACK
EMPLOYEES table FOR EACH ROW package
Increment variables)
O = E=% =
— e I —
AUDI T_EMP_TAB
AFTER STATEMENT
Copy and then reset
variables
@—) — |)
—
AUDI T_TABLE

‘ 16-35 Copyright © Oracle Corporation, 2001. All rights reserved.

A Sample Demonstration

Thefollowing pages of PL/SQL subprograms are an example of the interaction of triggers, packaged
procedures, functions, and global variables.

The sequence of events:
1. Issuean | NSERT, UPDATE, or DELETE command that can manipulate one or many rows.

2.AUDI T_EMP_TRI G, the AFTER ROWtrigger, calls the packaged procedure to increment the
global variables in the package VAR PACK. Becausethisis arow trigger, thetrigger fires once
for each row that you updated.

3. When the statement has finished, AUDI T_EMP_TAB, the AFTER STATEMENT trigger, callsthe
procedure AUDI T_EMP.

4. This procedure assigns the values of the global variables into local variables using the packaged
functions, updates the AUDI T_TABLE, and then resets the global variables.

Oracle9i: Program with PL/SQL 16-35

After Row and After Statement Triggers

CREATE OR REPLACE TRI GGER audit_enp_trig
AFTER UPDATE or | NSERT or DELETE on EMPLOYEES
FOR EACH ROW
BEG N
I F DELETI NG THEN var_pack.set _g_del (1);
ELSIF INSERTING THEN var_pack.set_g ins(1l);
ELSIF UPDATI NG (' SALARY")
THEN var _pack.set _g_up_sal (1);
ELSE var _pack.set _g upd(1);
END | F;
END audit_enp_trig;
/

CREATE OR REPLACE TRI GGER audi t _enp_tab
AFTER UPDATE or | NSERT or DELETE on enpl oyees
BEG N
audi t _enp;
END audit_enp_t ab;
/

‘ 16-36 Copyright © Oracle Corporation, 2001. All rights reserved.

AFTER Row and AFTER Statement Triggers

Thetrigger AUDI T_EMP_TRI Gisarow trigger that fires after every row manipulated. This trigger
invokes the package procedures depending on the type of DML performed. For example, if the DML
updates salary of an employee, then the trigger invokes the procedure SET_G_UP_SAL. This package
procedure inturn invokes the function G_UP_SAL. This function increments the package variable
GV_UP_SAL that keeps account of the number of rows being changed due to update of the salary.

Thetrigger AUDI T_EMP_TAB will fire after the statement has finished. This trigger invokes the
procedure AUDI T_EMP, which is on the following pages. The AUDI T_EMP procedure updates the
AUDI T_TABLE table. An entry is madeinto the AUDI T_ TABLE table with the information such as
the user who performed the DML, the table on which DML is performed, and the total number of such
data manipulations performed so far on the table (indicated by the value of the corresponding column
inthe AUDI T_TABLE table). At the end, the AUDI T_EMP procedure resets the package variables to
0.

Oracle9i: Program with PL/SQL 16-36

Demonstration: VAR PACK Package
Specification

var _pack. sql

CREATE OR REPLACE PACKAGE var _pack
IS
-- these functions are used to return the
-- val ues of package vari abl es
FUNCTI ON g_del RETURN NUMBER,
FUNCTI ON g_i ns RETURN NUMBER,
FUNCTI ON g_upd RETURN NUMBER,
FUNCTI ON g_up_sal RETURN NUMBER;
-- these procedures are used to nodify the
-- values of the package vari abl es
PROCEDURE set _g_del (p_val IN NUMBER);
PROCEDURE set _g_i ns (p_val IN NUMBER);
PROCEDURE set g _upd (p_val IN NUMBER);
PROCEDURE set g up_sal (p_val IN NUMBER);
END var _pack;
/

‘ 16-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Demonstration: VAR _PACK Package Body
var _pack_body. sql
CREATE OR REPLACE PACKAGE BODY var_pack IS

gv_del NUMBER := 0; gv_ins NUMBER : = 0;
gv_upd NUMBER := 0; gv_up_sal NUMBER := 0;
FUNCTI ON g_del RETURN NUMBER | S
BEG N
RETURN gv_del ;
END;
FUNCTION g_ins RETURN NUMBER | S
BEG N
RETURN gv_i ns;
END;
FUNCTI ON g_upd RETURN NUMBER | S
BEG N
RETURN gv_upd;
END;
FUNCTI ON g_up_sal RETURN NUMBER | S
BEG N
RETURN gv_up_sal;
END;

(continued on the next page)
Oracle9i: Program with PL/SQL 16-37

VAR PACK Package Body (continued)

PROCEDURE set g del (p_val |IN NUMBER) IS
BEG N
IF pval =0 THEN
gv_del := p_val;
ELSE gv_del := gv_del +1;
END | F;
END set g del;
PROCEDURE set _g ins (p_val |IN NUMBER) IS
BEG N
IF pval =0 THEN
gv_ins := p val;
ELSE gv_ins := gv_ins +1;
END | F;
END set g ins;
PROCEDURE set g upd (p_val |IN NUMBER) IS
BEG N
IF pval =0 THEN
gv_upd := p_val;
ELSE gv_upd := gv_upd +1;
END | F;
END set g upd;
PROCEDURE set g up_sal (p_val |IN NUMBER) IS
BEG N
IF pval =0 THEN

gv_up_sal := p_val;
ELSE gv_up_sal := gv_up_sal +1;
END | F;

END set g up_sal;
END var pack;
/

Oracle9i: Program with PL/SQL 16-38

Demonstration: Using the
AUDI T _EMP Procedure

CREATE OR REPLACE PRCCEDURE audit_enmp IS

v_del NUMBER = var _pack. g_del ;

v_ins NUMBER = var _pack. g_i ns;

v_upd NUVBER = var _pack. g_upd

v_up_sal NUMBER = var _pack. g_up_sal;
BEG N

IF v_del + v_ins + v_upd != 0 THEN
UPDATE audit_table SET
del = del + v_del, ins = ins + v_ins,
upd = upd + v_upd
VWHERE user _nanme=USER AND t abl enane=" EMPLOYEES'
AND col um_nanme |'S NULL;
END | F;
IF v_up_sal '=0 THEN
UPDATE audit_table SET upd = upd + v_up_sal
VWHERE user _nanme=USER AND t abl enane=" EMPLOYEES'
AND col umm_nane = ' SALARY';
END | F;

-- resetting global variables in package VAR PACK
var _pack.set _g_del (0); var_pack.set_g_ins (0);
var _pack.set _g_upd (0); var_pack.set_g _up_sal (0);

END audit _enp;

‘ 16-39 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating the AUDI T_TABLE with the AUDI T_EMP Procedure

The AUDI T_EMP procedure updates the AUDI T_TABLE and calls the functions in the package
VAR _PACK that reset the package variables, ready for the next DML statement.

<

Oracle9i: Program with PL/SQL 16-39

Summary

Procedure Package Trigger
XXXXXXXXXXXKXXXXXX e ~
VVVVVWVVWYVVVVVVY
XXXXXXXXXXXKXXXXXX I:I
VVVVVWVVWYVVVVVVY
XXXXXXXXXXXKXXXXXX Pro Ced ure A
VVVVVWVVWYVVVVVVY ;
XXXXXXKXKXXXXKXKXX d ec I aration
XXXXXXXXXXXKXXXXXX Y)
VVVVVWVVWYVVYVVVY
XXXXXXXXXXXKXXXXXX / \ l
VVVVVWVVWYVVVVVVY
XXXXXXXXXXXKXXXXXX I:I
VVVVVWVVWYVVVVVVY
XXXXXXXXXXXXXXXXXX Pro Ced ure B
definition
Procedure A
definition
Local
\ variable /

‘ 16-40 Copyright © Oracle Corporation, 2001. All rights reserved.

Deveop different types of procedural database constructs depending on their usage.

Construct Usage

Procedure PL/SQL programming block that is stored in the database for repeated
execution

Package Group of related procedures, functions, variables, cursors, constants, and
exceptions

Trigger PL/SQL programming block that is executed implicitly by a data manipulation
statement

Oracle9i: Program with PL/SQL 16-40

Practice 16 Overview

This practice covers the following topics:
* Creating statement and row triggers

* Creating advanced triggers to add to the
capabilities of the Oracle database

‘ 16-41 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 16 Overview

Y ou create statement and row triggers in this practice. Y ou create procedures that will be invoked
from thetriggers.

Oracle9i: Program with PL/SQL 16-41

Practice 16

1. Changesto data are allowed on tables only during normal office hours of 8:45 am. until 5:30
p.m., Monday through Friday.

Create a stored procedure called SECURE DML that prevents the DML statement from
executing outside of normal office hours, returning the message, “Y ou may only make
changes during normal office hours.”

2. a. Create astatement trigger on the JOBS table that calls the above procedure.

b. Test the procedure by temporarily modifying the hours in the procedure and attempting to
insert a new record into the JOBS table. (Example: replace 08:45 with 16:45; This attempt
resultsin an error message)

After testing, reset the procedure hours asspecified in question 1 and recreate the
procedure as in question 1 above.

If you havetime:

3. Employees should receive an automatic increase in salary if the minimum salary for ajob is
increased. | mplement this requirement through a trigger on the J OBS table.

a. Create a stored procedure named UPD_EMP_SAL to update the salary amount. This
procedure accepts two parameters. the job ID for which salary has to be updated, and the
new minimum salary for thisjob ID. This procedure is executed from the trigger on the
JOBS table.

b. Create arow trigger named UPDATE EMP_SALARY on the J OBS table that invokes the
procedure UPD_EMP_SAL, when the minimum salary in the JOBS table is updated for a

specified job ID.

c. Query the EMPLOYEES table to see the current salary for employees who are
programmers.
| LAST NAME | FIRST_NAME | SALARY
\Austin Diawid | 5260
Hunold lesander | 3000
|Ernst |Eiruu:e | BO00
Pataballa all | 5280
|Lurentz |Diana | 4620

d. Increasethe minimum salary for the Programmer job from 4,000 to 5,000.

e. EmployeeLorentz (employee ID 107) had a salary of lessthan 4,500. Verify that her
salary has been increased to the new minimum of 5,000.

| LAST _NAME | FIRST_NAME | SALARY
|L|:|rentz |Diana | 5000

Oracle9i: Program with PL/SQL 16-42

More Trigger Concepts

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Create additional database triggers
* Explain the rules governing triggers
* Implement triggers

17-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn how to create more database triggers and learn the rules governing triggers.
Y ou also learn many applications of triggers.

Oracle9i: Program with PL/SQL 17-2

Creating Database Triggers

* Triggering user event:
— CREATE, ALTER, or DROP

— Logging on or off

* Triggering database or system event:
— Shutting down or starting up the database
— A specific error (or any error) being raised

17-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Database Triggers
Before coding the trigger body, decide on the components of the trigger.

Triggers on system events can be defined at the database or schemalevel. For example, a database
shutdown trigger is defined at the database level. Triggers on data definition language (DDL)
statements, or a user logging on or off, can also be defined at either the database level or schema leve.

Triggers on DML statements are defined on a specific table or a view.

A trigger defined at the database levd fires for all users, and atrigger defined at the schema or table

level fires only when the triggering event involves that schema or table.
Triggering events that can cause atrigger to fire:
* A data definition statement on an object in the database or schema
» A specific user (or any user) logging on or off
e A database shutdown or startup
» A gspecific or any error that occurs

Oracle9i: Program with PL/SQL 17-3

Creating Triggers on DDL Statements

Syntax:

CREATE [OR REPLACE] TRI GGER trigger nhane
timng
[ddl _eventl [OR ddl _event2 OR ...]]
ON { DATABASE| SCHENVA}
trigger _body

17-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Create Trigger Syntax

DDL_Event Possible Values

CREATE Causes the Oracle server to fire the trigger whenever a CREATE statement
adds a new database object to the dictionary

ALTER Causes the Oracle server to fire the trigger whenever an ALTER statement
modifies a database object in the data dictionary

DROP Causes the Oracle server to fire the trigger whenever a DROP statement
removes a database object in the data dictionary

Thetrigger body represents a complete PL/SQL block.

Y ou can create triggers for these events on DATABASE or SCHEMA. Y ou also specify BEFORE or
AFTER for thetiming of thetrigger.

DDL triggersfireonly if the object being created is a cluster, function, index, package, procedure, role,
sequence, synonym, table, tablespace, trigger, type, view, or user.

Oracle9i: Program with PL/SQL 17-4

Creating Triggers on System Events

CREATE [OR REPLACE] TRI GGER trigger nhane
timng
[dat abase_event 1 [OR dat abase_event2 OR ...]]
ON { DATABASE| SCHENVA}
trigger _body

17-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Create Trigger Syntax

Database event |Possible Values

AFTER Causes the Oracle server to fire the trigger whenever a server error message is
SERVERERROR logged

AFTER LOGON Causes the Oracle server to fire the trigger whenever a user logs on to the
database

BEFORE LOGOFF |Causesthe Oracle server to fire the trigger whenever a user logs off the database

AFTER STARTUP | Causes the Oracle server to fire the trigger whenever the database is opened

BEFORE Causes the Oracle server to fire the trigger whenever the database is shut down
SHUTDOWN

Y ou can create triggers for these events on DATABASE or SCHEMA except SHUTDOWN and STARTUP,
which apply only to the DATABASE.

Oracle9i: Program with PL/SQL 17-5

LOGON and LOGOFF Trigger Example

CREATE OR REPLACE TRI GGER | ogon_trig
AFTER LOGON ON SCHEMA
BEG N
| NSERT I NTO log_trig table(user_id, |og date, action)
VALUES (USER, SYSDATE, 'Logging on');
END;
/

CREATE OR REPLACE TRI GGER | ogoff _trig
BEFORE LOGOFF ON SCHEMVA
BEG N
| NSERT I NTO log_trig table(user_id, |og date, action)
VALUES (USER, SYSDATE, 'Logging off');
END;
/

17-6 Copyright © Oracle Corporation, 2001. All rights reserved.

LOGON and LOGOFF Trigger Example

Y ou can create this trigger to monitor how often you log on and off, or you may want to write a report
that monitors the length of time for which you are logged on. When you specify ON SCHEMA, the
trigger fires for the specific user. If you specify ON DATABASE, thetrigger fires for all users.

Oracle9i: Program with PL/SQL 17-6

CALL Statements

CREATE [OR REPLACE] TRI GGER trigger nhane

timng

eventl [OR event2 OR event 3]
ON t abl e_nane

[REFERENCI NG OLD AS ol d | NEWAS new
[FOR EACH ROW

[WHEN condi tion]
CALL procedure_nane

CREATE OR REPLACE TRI GGER | og_enpl oyee
BEFORE | NSERT ON EMPLOYEES
CALL | og_executi on

/

17-7 Copyright © Oracle Corporation, 2001. All rights reserved.

CALL Statements
A CALL statement enables you to call a stored procedure, rather than coding the PL/SQL body in the
trigger itsdf. The procedure can be implemented in PL/SQL, C, or Java.
Thecall can reference the trigger attributes :NEWand :OLD as parameters asin the following example:
CREATE TRI GGER sal ary_check

BEFORE UPDATE OF salary, job_id ON enpl oyees

FOR EACH ROW

VWHEN (NEW job_ id <> ' AD PRES')

CALL check_sal (: NEW|job_id, :NEWsal ary)

/
Note: Thereis no semicolon at the end of the CALL statement.

In the example above, the trigger calls aprocedurecheck _sal . The procedure compares the new
salary with the salary range for the new job ID from the JOBS table.

Oracle9i: Program with PL/SQL 17-7

Reading Data
from a Mutating Table

UPDATE |enpl oyees |
SET salary = 3400
WHERE | ast _nanme = 'Stiles';

. CHECK_SALARY
Failure . -
EMPLPYEES table trigger
| EMPLOYEE ID | LAST NAME | JOBID | SALARY | ~~~~°7°° >
| 125 [Mayer \ST_CLERK | 3200
| 126 | Mikkilineni |ST_CLERK | 2700
| 127 ||Landry IST_CLERK | 2400 o

| 138 [Stiles ST CLERK

BEFORE UPDATE row

Triggered table/
mutating table

Trigger event

17-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules Governing Triggers

Reading and writing data using triggers is subject to certain rules. Therestrictions apply only to row
triggers, unless a statement trigger is fired as aresult of ON DELETE CASCADE.

Mutating Table

A mutating tableis atable that is currently being modified by an UPDATE, DELETE, or | NSERT
statement, or atable that might need to be updated by the effects of a declarative DELETE CASCADE
referential integrity action. A table is not considered mutating for STATEMENT triggers.

Thetriggered tableitsdf is a mutating table, as well as any table referencing it with the FOREI GN KEY
constraint. Thisrestriction prevents arow trigger from seeing an inconsistent set of data.

Oracle9i: Program with PL/SQL 17-8

Mutating Table: Example

ON enpl oyees
[FOR EACH ROW|

DECLARE

BEG N

WHERE job id =

END I F;
END;
/

CREATE OR REPLACE TRI GGER check_sal ary
BEFORE | NSERT OR UPDATE OF sal ary,

WHEN (NEW] ob_id <> ' AD PRES')

v_m nsal ary enpl oyees. sal ar yWd YPE;
v_naxsal ary enpl oyees. sal ar yWd YPE;

SELECT M N(sal ary), MAX(sal ary)
INTO v_mnsalary, v_naxsalary
FROM_[ETpT Oyees |

:NEW | ob_i d;

IF :NEWsalary < v_mnsalary OR

:NEWsal ary > v_maxsal ary THEN
RAI SE_APPLI CATI ON_ERROR(- 20505, ' Qut of

range');

17-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Mutating Table: Example

The CHECK _SALARY trigger in the example, attempts to guarantee that whenever a new employeeis
added to the EMPLOYEES table or whenever an existing employee' s salary or job ID is changed, the

employee's salary falls within the established salary range for the employee’s job.

When an employee record is updated, the CHECK _SALARY trigger is fired for each row that is updated.
Thetrigger code queries the same table that is being updated. Hence, it is said that the EMPLOYEES

table is mutating table.

Oracle9i: Program with PL/SQL 17-9

Mutating Table: Example

UPDATE enpl oyees
SET salary = 3400
WHERE | ast _name = 'Stiles';

TTPDATE employees
*

EEFOF. at hne 1:

OFA-04091: table PLEQL EMPLOYEES 12 mutating, tngzer/finction may not zee it
ORA-06512: at "PLEQL CHECE _SATARTY" lne 5

CRA-D408E: error during execution of trigger PLEQL CHECE _SALART

‘ 17-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Mutating Table: Example (continued)
Try to read from a mutating table.

If you restrict the salary within a range between the minimum existing value and the maximum existing
valueyou get arun-time error. The EMPLOYEES tableis mutating, or in a state of change; therefore,
the trigger cannot read fromit.

Remember that functions can also cause a mutating table error when they areinvoked ina DML
statement.

Oracle9i: Program with PL/SQL 17-10

Implementing Triggers

You can use trigger for:

® Security

* Auditing

* Data integrity

* Referential integrity

* Table replication

® Computing derived data automatically
* Eventlogging

‘ 17-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Implementing Triggers

Develop database triggers in order to enhance features that cannot otherwise be implemented by the
Oracle server or as alternatives to those provided by the Oracle server.

Feature Enhancement

Security The Oracle server allows table access to users or roles. Triggers allow
table access according to data val ues.

Auditing The Oracle server tracks data operations on tables. Triggers track
values for data operations on tables.

Dataintegrity The Oracle server enforces integrity constraints. Triggers implement
complex integrity rules.

Referential integrity The Oracle server enforces standard referential integrity rules. Triggers
implement nonstandard functionality.

Table replication The Oracle server copies tables asynchronously into snapshots.
Triggers copy tables synchronously into replicas.

Derived data The Oracle server computes derived data values manually. Triggers
compute derived data val ues automatically.

Event logging The Oracle server logs events explicitly. Triggers log events
transparently.

Oracle9i: Program with PL/SQL 17-11

Controlling Security Within
the Server

GRANT SELECT, | NSERT, UPDATE, DELETE

ON enpl oyees

TO clerk; -- database rol e
GRANT cl erk TO scott;

‘ 17-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Security Within the Server

Deveop schemas and roles within the Oracle server to control the security of data operations on tables
according to the identity of the user.

e Base privileges upon the username supplied when the user connects to the database.
» Determine access to tables, views, synonyms, and sequences.
e Determine query, data manipulation, and data definition privileges.

Oracle9i: Program with PL/SQL 17-12

Controlling Security
with a Database Trigger

CREATE OR REPLACE TRI GGER secure_enp
BEFORE | NSERT OR UPDATE OR DELETE ON enpl oyees
DECLARE
v_dunmy VARCHAR2(1);
BEG N
IF (TO_CHAR (SYSDATE, 'DY") IN (' SAT',"' SUN))
THEN RAI SE_APPLI CATI ON_ERROR (-20506, ' You may only
change data during normal business hours.');
END | F;
SELECT COUNT(*) I NTO v_dumry FROM hol i day
WHERE hol i day_dat e = TRUNC (SYSDATE) ;
| F v_dumy > 0 THEN RAI SE_APPLI CATI ON_ERROR(- 20507,
"You may not change data on a holiday.");
END | F;
END;
/

‘ 17-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Security With a Database Trigger
Deveop triggers to handle more complex security requirements.

» Baseprivileges on any database values, such as the time of day, the day of the week, and so on.
» Deermine accessto tables only.
» Determine data manipulation privileges only.

Oracle9i: Program with PL/SQL 17-13

Using the Server Facility to
Audit Data Operations

AUDI T | NSERT, UPDATE, DELETE
ON departnents
BY ACCESS

VWHENEVER SUCCESSFUL;

Audit succeeded.

The Oracle server stores the audit information in a
data dictionary table or operating system file.

‘ 17-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Auditing Data Operations

Y ou can audit data operations within the Oracle server. Database auditing is used to monitor and gather
data about specific database activities. The DBA can gather statistics about which tables are being
updated, how many 1/Os are performed, how many concurrent users connect at peak time, and so on.

e Audit users, statements, or objects.

* Audit dataretrieval, data manipulation, and data definition statements.
» Writethe audit trail to a centralized audit table.

» Generate audit records once per session or once per access attempt.

e Capture successful attempts, unsuccessful attempts, or both.

e Enableand disable dynamically.

Executing SQL through PL/SQL program units may generate several audit records because the program
units may refer to other database objects.

Oracle9i: Program with PL/SQL 17-14

Auditing by Using a Trigger

CREATE OR REPLACE TRI GGER audit _enp_val ues
AFTER DELETE OR | NSERT OR UPDATE ON enpl oyees
FOR EACH ROW
BEA N
| F (audit_enp_package.g_reason IS NULL) THEN
RAlI SE_APPLI CATI ON_ERROR (-20059, ' Specify a reason
for the data operation through the procedure SET_REASON
of the AUDI T_EMP_PACKAGE before proceeding.');
ELSE
I NSERT | NTO audit_enp_table (user_nane, tinmestanp, id,
old | ast _nane, new |ast nanme, old title, newtitle,
ol d_sal ary, new sal ary, conments)
VALUES (USER, SYSDATE, :COLD.enployee_id, :CLD. | ast_nane,
:NEW I ast_name, :COLD.job_id, :NEWjob_ id, :Q.D. salary,
: NEW sal ary, audit_enp_package. g_reason);
END | F;
END;

CREATE OR REPLACE TRI GGER cl eanup_audi t _enp
AFTER | NSERT OR UPDATE OR DELETE ON enpl oyees
BEA N

audi t _enp_package. g_reason := NULL;

D;

‘ 17-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Audit Data Values
Audit actual data values with triggers.

Y ou can:
e Audit data manipulation statements only
» Writethe audit trail to a user-defined audit table
» Generate audit records once for the statement or once for each row
e Capture successful attempts only
» Enable and disable dynamically

Using the Oracle server, you can perform database auditing. Database auditing cannot record changes to
specific column values. If the changes to the table columns need to be tracked and column values need to be
stored for each change, use application auditing. Application auditing can be done either through stored
procedures or database triggers, as shown in the examplein the dlide.

Oracle9i: Program with PL/SQL 17-15

Enforcing Data Integrity
Within the Server

ALTER TABLE enpl oyees ADD
CONSTRAI NT ck_sal ary CHECK (sal ary >= 500);

Table altered.

‘ 17-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Enforcing Data Integrity within the Server

Y ou can enforce data integrity within the Oracle server and develop triggers to handle more complex
data integrity rules.

The standard data integrity rules are not null, unique, primary key, and foreign key.
Usetheserulesto:
* Provide constant default values
» Enforce static constraints
» Enable and disable dynamically
Example
The code sample in the slide ensures that the salary is at least $500.

Oracle9i: Program with PL/SQL 17-16

Protecting Data Integrity
with a Trigger

CREATE OR REPLACE TRI GGER check_sal ary
BEFORE UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
WHEN (NEW sal ary < OLD. sal ary)

BEG N
RAI SE_APPLI CATI ON_ERROR (-20508,

"Do not decrease salary.');
END;
/

‘ 17-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Protecting Data Integrity with a Trigger
Protect data integrity with a trigger and enforce nonstandard data integrity checks.
* Provide variable default values.
» Enforce dynamic constraints.
e Enableand disable dynamically.
* Incorporate declarative constraints within the definition of atable to protect data integrity.
Example
The code sample in the slide ensures that the salary is never decreased.

Oracle9i: Program with PL/SQL 17-17

Enforcing Referential Integrity
Within the Server

ALTER TABLE enpl oyees
ADD CONSTRAI NT enp_deptno_fk
FOREI GN KEY (departnent _id)
REFERENCES depart nent s(depart nment _i d)
ON DELETE CASCADE;

‘ 17-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Enforcing Referential Integrity within the Server

Incorporate referential integrity constraints within the definition of atableto prevent data inconsistency
and enforce referential integrity within the server.

* Restrict updates and del etes.

» Cascade deletes.

e Enableand disable dynamically.
Example

When a department is removed from the DEPARTMENTS parent table, cascade the deletion to the
corresponding rows in the EMPLOYEES child table.

Oracle9i: Program with PL/SQL 17-18

Protecting Referential Integrity
with a Trigger

CREATE OR REPLACE TRI GGER cascade_updat es
AFTER UPDATE OF departnent _id ON departnents
FOR EACH ROW
BEG N
UPDATE enpl oyees
SET enpl oyees. departnent _i d=: NEW departnment _i d
WHERE enpl oyees. departnent _i d=: OLD. depart nent _i d;
UPDATE j ob_hi story
SET departnment _i d=: NEW departnent _id
WHERE depart nment _i d=: OLD. departnent _i d;
END;
/

‘ 17-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Protecting Referential Integrity with a Trigger

Deveop triggers to implement referential integrity rules that are not supported by declarative
constraints.

e Cascade updates.
e Set to NULL for updates and deletions.
e Se to adefault value on updates and deletions.
» Enforcereferential integrity in a distributed system.
e Enableand disable dynamically.
Example

Enforce referential integrity with atrigger. When the value of DEPARTMENT _| D changesin the
DEPARTMENTS parent table, cascade the update to the corresponding rows in the EMPLOYEES child
table.

For a complete referential integrity solution using triggers, a single trigger is not enough.

Oracle9i: Program with PL/SQL 17-19

Replicating a Table
Within the Server

CREATE SNAPSHOT enp_copy AS
SELECT * FROM enpl oyees@y;

‘ 17-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Snapshot

A snapshot isalocal copy of atable datathat originates from one or more remote master tables. An
application can query the datain aread-only table snapshot, but cannot insert, update, or deleterows in

the snapshot. To keep a snapshot's data current with the data of its master, the Oracle server must
periodically refresh the snapshot.

When this statement is used in SQL, replication is performed implicitly by the Oracle server by using
internal triggers. This has better performance over using user-defined PL/SQL triggers for replication.

Copying Tables with Server Snapshots
Copy atable with a snapshot.
» Copy tables asynchronously, at user-defined intervals.
e Base snapshots on multiple master tables.

» Read from snapshots only.

» Improvethe performance of data manipulation on the master table, particularly if the network fails.
Alternatively, you can replicate tables using triggers.
Example
In San Francisco, create a snapshot of the remote EMPLOYEES tablein New Y ork.

Oracle9i: Program with PL/SQL 17-20

Replicating a Table with a Trigger

CREATE OR REPLACE TRI GGER enp_replica
BEFORE | NSERT OR UPDATE ON enpl oyees
FOR EACH ROW
BEG N /*Only proceed if user initiates a data operati on,
NOT t hrough the cascading trigger.*/
| F 1 NSERTI NG THEN
IF :NEWflag | S NULL THEN
I NSERT | NTO enpl oyees @f

VALUES(: new. enpl oyee_id, :new last_name,..., 'B);
:NEWflag := "A";
END | F;

ELSE /* Updating. */
IF :NEWflag = : OLD. fl ag THEN
UPDATE enpl oyees &f
SET enanme = : NEW | ast _narne,
flag = : NEW T ag
WHERE enpl oyee_id = : NEW enpl oyee_i d;

END | F;

IF :O.D.flag = "A THEN : NEWflag := 'B';
ELSE : NEWflag :="'A;

END | F;

END | F;

END;

‘ 17-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Replicating a Table with a Trigger
Replicate atable with atrigger.
e Copy tables synchronoudly, inreal time.
» Basereplicas on a single master table.

* Read from replicas, as well as write to them.

» Impair the performance of data manipulation on the master table, particularly if the network fails.
Maintain copies of tables automatically with snapshots, particularly on remote nodes.
Example
In New York, replicate the local EMPLOYEES table to San Francisco.

Oracle9i: Program with PL/SQL 17-21

Computing Derived Data Within the Server

UPDATE depart nents
SET total sal =(SELECT SUM sal ary)
FROM enpl oyees
WHERE enpl oyees. departnent _id =
depart nents. departnent _id);

‘ 17-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Computing Derived Data within the Server
Compute derived values in a batch job.

Compute derived column values asynchronously, at user-defined intervals.
e Storederived values only within database tables.

» Modify data in one pass to the database and calculate derived data in a second pass.

Alternatively, you can use triggers to keep running computations of derived data.
Example

Keep the salary total for each department within a special TOTAL _SALARY column of the
DEPARTMENTS table.

Oracle9i: Program with PL/SQL 17-22

Computing Derived Values with a Trigger

CREATE OR REPLACE PROCEDURE i ncrenent _sal ary
(p_id I N departnents. depart nment i d% YPE,
p_salary IN departnents.total sal % YPE)

IS

BEG N
UPDATE depart nments
SET total _sal = NVL (total _sal, 0)+ p_salary
VWHERE departnment _id = p_id;

END i ncrenent _sal ary;

CREATE OR REPLACE TRI GGER conpute_sal ary
AFTER | NSERT OR UPDATE OF sal ary OR DELETE ON enpl oyees
FOR EACH ROW
BEG N
| F DELETI NG THEN
i ncrenment _sal ary(: OLD. departnent __id, (-1*: OLD. sal ary));
ELSI F UPDATI NG THEN
i ncrenment _sal ary(: NEWdepartnent _id, (: NEWsal ary-: OLD. sal ary))
ELSE i ncrenent _sal ary(: NEW depart nent _i d, : NEW sal ary) ; - - | NSERT
END | F;
END;

‘ 17-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Computing Derived Data Values with a Trigger
Compute derived values with a trigger.

e Compute derived columns synchronously, in real time.

» Store derived values within database tables or within package global variables.

* Modify data and calculate derived data in a single pass to the database.
Example

Keep arunning total of the salary for each department within the special TOTAL_ SALARY column of
the DEPARTMENTS table.

Oracle9i: Program with PL/SQL 17-23

Logging Events with a Trigger

CREATE OR REPLACE TRIGCGER notify _reorder_rep
BEFORE UPDATE OF quantity on_hand, reorder_point
ON inventories FOR EACH ROWN
DECLARE
v_descrip product descriptions. product _descri pti on%YPE;
v_nsg_text VARCHAR2(2000);
stat _send nunber(1);
BEG N
IF :NEWgquantity on_hand <= : NEWreorder_ point THEN
SELECT product _description I NTO v_descrip
FROM pr oduct descri ptions
WHERE product id = : NEW product i d;

v_neg_text :="'ALERT: | NVENTORY LOW ORDER: ' | $CHR(10) | |
..."Yours," ||CHR(10) ||user || "."|]] CHR(10)|| CHR(10);
ELSI F

:OLD. quantity _on_hand < : NEWquantity on_hand THEN NULL;
ELSE

v_neg_text := "Product # ||... CHR(10);
END | F;

DBVS_Pi PE. PACK_MESSAGE(V_msg_t ext)
stat _send : = DBVB_PI PE. SEND MESSAGE(' | N\V_PI PE);
END;

‘ 17-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Logging Events with a Trigger

Within the server, you can log events by querying data and performing operations manually. This sends
amessage using a pipe when the inventory for a particular product has fallen bel ow the acceptable
limit. Thistrigger uses the Oracle-supplied package DBMS_PI PE to send the message.

L ogging Events within the Server
* Query data explicitly to determine whether an operation is necessary.
* Inasecond step, perform the operation, such as sending a message.
Using Triggersto Log Events
» Peform operations implicitly, such as firing off an automatic € ectronic memo.
» Modify data and perform its dependent operation in a single step.
» Log events automatically as data is changing.

Oracle9i: Program with PL/SQL 17-24

Logging Events with a Trigger (continued)
L ogging Events Transpar ently
In thetrigger code:
e CHR(10) isacariagereturn
 Reorder _point isnot null
* Another transaction can receive and read the message in the pipe
Example
CREATE OR REPLACE TRI GGER notify reorder _rep
BEFORE UPDATE OF anount in_stock, reorder_point
ON inventory FOR EACH ROW
DECLARE
v_descrip product. descri p%l YPE;
v_meg_text VARCHAR2(2000);
stat_send nunber(1);
BEG N
IF :NEWanount in_stock <= : NEWreorder_point THEN
SELECT descrip INTO v_descrip
FROM PRODUCT WHERE prodi d = : NEW product i d;
v_neg_text := "ALERT: | NVENTORY LOW ORDER:' || CHR(10)] |
"It has conme to ny personal attention that, due to recent'
| | CHR(10) || 'transacti ons, our inventory for product # '||

TO CHAR(: NEW product _id)||'-- "||v_descrip ||

' -- has fallen bel ow acceptable levels.' || CHR(10) ||

"Yours,' || CHR(10) |]Juser || '."|]| CHR(10)|| CHR(10);
ELSI F

: OLD. anount _i n_st ock<: NEW anount _i n_st ock THEN NULL;
ELSE

v_meg_text := 'Product #'|| TO CHAR(: NEW product id)

||' ordered. '||] CHR(10)|| CHR(10); END I F;

DBVS Pl PE. PACK MESSAGE(Vv_nBg_text);
stat_send : = DBMS_PI PE. SEND MESSAGE(' | NV_PI PE');
END;

Oracle9i: Program with PL/SQL 17-25

Benefits of Database Triggers

* Improved data security:

— Provide enhanced and complex security
checks

— Provide enhanced and complex auditing

* Improved data integrity:
— Enforce dynamic data integrity constraints
— Enforce complex referential integrity
constraints

— Ensure that related operations are performed
together implicitly

‘ 17-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Database Triggers
Y ou can use database triggers:
» Asalternatives to features provided by the Oracle server
» If your requirements are more complex or more simple than those provided by the Oracle server

» If your requirements are not provided by the Oracle server at all

Oracle9i: Program with PL/SQL 17-26

Managing Triggers

The following system privileges are required to

manage triggers:

* The CREATE/ ALTER/ DROP (ANY) TRI GGER
privilege enables you to create a trigger in any
schema

* The ADM NI STER DATABASE TRI GGER privilege
enables you to create a trigger on DATABASE

* The EXECUTE privilege (if your trigger refers to any
objects that are not in your schema)

Note: Statements in the trigger body operate under
the privilege of the trigger owner, not the trigger user.

‘ 17-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Triggers
In order to create atrigger in your schema, you need the CREATE TRI GGER system privilege, and
you must either own the table specified in the triggering statement, have the ALTER privilege for
the tablein the triggering statement, or have the ALTER ANY TABLE system privilege. You can
alter or drop your triggers without any further privileges being required.

If the ANY keyword is used, you can create, alter, or drop your own triggers and those in another
schema and can be associated with any user’s table.

Y ou do not need any privileges to invoke a trigger in your schema. A trigger isinvoked by DML
statements that you issue. But if your trigger refers to any objects that are not in your schema, the
user creating the trigger must have the EXECUTE privilege on the referenced procedures, functions,
or packages, and not through roles. As with stored procedures, the statement in the trigger body
operates under the privilege domain of thetrigger’s owner, not that of the user issuing the
triggering statement.

To create atrigger on DATABASE, you must have the ADM NI STER DATABASE TRI GGER
privilege. If this privilegeislater revoked, you can drop the trigger, but you cannot alter it.

Oracle9i: Program with PL/SQL 17-27

Viewing Trigger Information

You can view the following trigger information:

e USER OBJECTS data dictionary view: object
information

e USER TRI GGERS data dictionary view: the text of
the trigger

* USER ERRORS data dictionary view: PL/SQL syntax
errors (compilation errors) of the trigger

‘ 17-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing Trigger Information
The dlide shows the data dictionary views that you can access to get information regarding the
triggers.
The USER_OBJECTS view contains the name and status of the trigger and the date and time when
the trigger was created.
The USER_ERRORS view contains the details of the compilation errors that occurred while a
trigger was compiling. The contents of these views are similar to those for subprograms.
The USER_TRI GGERS view contains details such as name, type, triggering event, the table on
which the trigger is created, and the body of thetrigger.

TheSELECT User namre FROM USER USERS; statement gives the name of the owner of the
trigger, not the name of the user who is updating the table.

Oracle9i: Program with PL/SQL 17-28

Using USER_TRI GGERS*

Column Column Description

TRI GGER_NAME Name of the trigger

TRI GGER_TYPE The type is BEFORE, AFTER, | NSTEAD OF
TRI GGERI NG_EVENT The DML operation firing the trigger
TABLE NAME Name of the database table

REFERENCI NG_NAMES Name used for : QLD and : NEW

VHEN_CLAUSE The when_clause used
STATUS The status of the trigger
TRI GGER_BCODY The action to take

* Abridged column list

‘ 17-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Using USER_TRI GGERS

If the source fileis unavailable, you can use iSQL*Plus to regenerate it from USER_TRI GGERS.
You can also examinethe ALL_ TRI GGERS and DBA TRI GGERS views, each of which contains the
additional column OANER, for the owner of the object.

Oracle9i: Program with PL/SQL 17-29

Listing the Code of Triggers

SELECT trigger _nane, trigger _type, triggering_event,
t abl e_nane, referenci ng_nanes,
status, trigger_body

FROM user _triggers
WHERE trigger_name = ' RESTRI CT_SALARY' ;

[TRIGGER_NAME [TRIGGER_TYPE [TRIGGERING_EVENT [TABLE_NAME [REFERENCING_NAMES [WHEN_CLAUS [STATUS [TRIGGER_BODY

BEGIN IF NOT
(NEW.JOB_ID
RESTRICT SaLary [BE ORE BACH | ar o oR UPDATE |EMPLOYEES |TEFERENCING NEW ENABLED I (A0 _PRES '
ROW AS NEW OLD AS OLD !
AD WPY) AND
NE W SAL

‘ 17-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Usethe USER TRI GGERS data dictionary view to display information about the RESTRI CT_SAL

trigger.

Oracle9i: Program with PL/SQL 17-30

Summary

In this lesson, you should have learned how to:

®* Use advanced database triggers

* List mutating and constraining rules for triggers
* Describe the real-world application of triggers

* Manage triggers

* View trigger information

‘ 17-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i: Program with PL/SQL 17-31

Practice 17 Overview

This practice covers creating advanced triggers to
add to the capabilities of the Oracle database.

‘ 17-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 17 Overview

In this practice you decide how to implement a number of business rules. Y ou will create triggers for
those rules that should be implemented as triggers. The triggers will execute procedures that you
have placed in a package.

Oracle9i: Program with PL/SQL 17-32

Practice 17
A number of business rules that apply to the EMPLOYEES and DEPARTMENTS tables are listed below.
Decide how to implement each of these business rules, by means of declarative constraints or by using
triggers.
Which constraints or triggers are needed and are there any problems to be expected?
Implement the business rules by defining the triggers or constraints that you decided to create.
A partial packageis providedinfilel ab17_1. sql towhich you should add any necessary procedures
or functions that are to be called from triggers that you may create for the following rules.
(Thetriggers should execute procedures or functions that you have defined in the package.)

Business Rules

Rule 1. Sales managers and sales representatives should always receive commission. Employees
who are not sales managers or sales representatives should never receive a commission.
Ensure that this restriction does not validate the existing records of the EMPLOYEES

table. It should be effective only for the subsequent inserts and updates on the table.
Rule 2. The EMPLOYEES table should contain exactly one president.

Test your answer by inserting an employee record with the following details: employee
ID 400, last nameHarri s, first name Al i ce, email ID AHARRI S, job ID AD_PRES,
hire date SYSDATE , salary 20000, and department ID 20.

Note: You do not need to implement arule for case sensitivity; instead you need to test
for the number of people with thejob title of President.

Rule 3. An employee should never be a manager of more than 15 employees.

Test your answer by inserting the following records into the EMPLOYEES table (perform
a query to count the number of employees currently working for manager 100 before
inserting these rows):
i. Employee D 401, last name Johnson, first nameBr i an, email ID
BJOHNSQN, job ID SA MAN, hire date SYSDATE, salary 11000, manager
ID 100, and department 1D 80. (This insertion should be successful, because
there are only 14 employees working for manager 100 so far.)
ii. EmployeelD 402, last name Kel | ogg, first name Tony, e-mail ID
TKELLGCG, job ID ST_MAN, hire date SYSDATE , salary 7500, manager
ID 100, and department 1D 50. (This insertion should be unsuccessful, because there
are already 15 employees working for manager 100.)

Rule 4. Salaries can only be increased, never decreased.

The present salary of employee 105 is 5000. Test your answer by decreasing the salary of
employee 105 to 4500.

Oracle9i: Program with PL/SQL 17-33

Practice 17 (continued)

Rule 5. If adepartment moves to ancther location, each employee of that department automatically
receives a salary raise of 2 percent.

View the current salaries of employees in department 90.

| LAST _NAME | SALARY | DEPARTMENT _ID

King | 24000 | a0
Kochhar | 17000 | 90
D& Haan | 17000 | 90

Test your answer by moving department 90 to location 1600. Query the new salaries of
employees of department 90.

| LAST NAME | SALARY | DEPARTMENT _ID

IKing | 24480 | a0
\Kachhar | 17340 | a0
D Haan | 17340 | a0

Oracle9i: Program with PL/SQL 17-34

Managing Dependencies

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Track procedural dependencies

* Predict the effect of changing a database object
upon stored procedures and functions

®* Manage procedural dependencies

18-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

This lesson introduces you to object dependencies and implicit and explicit recompilation of invalid
objects.

Oracle9i: Program with PL/SQL 18-2

Understanding Dependencies

Dependent Objects Referenced Objects

Table Function

View Package Specification

Database Trigger Procedure

Procedure Sequence

Function Synonym

Package Body Table

Package Specification View

User-Defined Object User-Defined Object

and Collection Types and Collection Types
18-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Dependent and Referenced Objects

Some objects reference other objects as part of their definition. For example, a stored procedure
could contain a SEL ECT statement that sdlects columns from a table. For this reason, the stored

procedureis called a dependent object, whereas the tableis called a referenced object.

Dependency | ssues
If you alter the definition of areferenced object, degpendent objects may or may not continue to

work properly. For example, if the table definition is changed, the procedure may or may not
continue to work without error.

The Oracle server automatically records dependencies among objects. To manage dependencies, all

schema objects have a status (valid or invalid) that is recorded in the data dictionary, and you can
view the status in the USER_OBJECTS data dictionary view.

Status

Significance

VALI D

The schema object has been compiled and can be immediately used when
referenced.

I NVALI D The schema object must be compiled before it can be used.

Oracle9i: Program with PL/SQL 18-3

Dependencies

/ View or \

Procedure procedure Table
e | Direct Direct
T | dEPENDENCY % dependency
VVVVVVVVVVVVVV > >
Referenced
Dependent /

.............................. U~

Dependent Indirect Referenced
\ dependency /
18-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Dependent and Referenced Objects (continued)

A procedure or afunction can directly or indirectly (through an intermediate view,
procedure, function, or packaged procedure or function) reference the following objects:

+ Tables

* Views

e Seguences

* Procedures

* Functions

e Packaged procedures or functions

Oracle9i: Program with PL/SQL 18-4

Local Dependencies

/ Procedure

XXXXXXXXXXX XXX
VVVVVVVVVVVVVV
XXXXXXXXXXX XXX
VVVVVVVVVVVVVV
XXXXXXXXXXX XXX
VVVVVVVVVVVVVV
VVVVVVVVVVVVVV

Procedure View

VVVVVVVVVVVVVV
E XXXXXXXXXXX XXX E
VVVVVVVVVVVVVV
XXXXXXXXXXX XXX
VVVVVVVVVVVVVV

XXXXXXXXXXX XXX
VVVVVVVVVVVVVV

|

Table \

_ Local references -

%

Direct local
dependency

18-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Local Dependencies

In the case of local dependencies, the objects are on the same node in the same database. The Oracle
server automatically manages all local dependencies, using the database s internal “ depends-on”
table. When areferenced object is modified, the dependent objects are invalidated. The next time an
invalidated object is called, the Oracle server automatically recompilesit.

Oracle9i: Program with PL/SQL 18-5

Local Dependencies

/ Procedure Procedure View Table \
[7

XXXXXXXXXXXXXX VVVVVVVVVVVVVV /
VVVVVVVVVVVVVV >
XXXXXXXXXXXXXX | = :\t:x:x:x:x >
VVVVVVVVVVVVVV XXXXXXXXXXX XXX
XXXXXXXXXXXXXX VVVVVVVVVVVVVV 7
VVVVVVVVVVVVVV XXXXXXXXXXX XXX ,_/'/ /
VVVVVVVVVVVVVV VVVVVVVVVVVVVV —
I NVALI D I NVALI D I NVALI D

_ Local references /

N

— Q2%
Direct local Definition
[dependency] [change]

N

The Oracle server implicitly recompiles any | NVALI D
object when the object is next called.

18-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Local Dependencies (continued)
Assume that the structure of the table on which a view is based is modified. When you describe the
view by using iSQL*Plus DESCRI BE command, you get an error message that states that the object
isinvalid to describe. This is because the command is not a SQL command and, at this stage, the
view isinvalid because the structure of its base table is changed. If you query the view now, the
view is recompiled automatically and you can see the result if it is successfully recompiled.

Oracle9i: Program with PL/SQL 18-6

A Scenario of Local Dependencies

_d EMP_VWview
procedure
[EMPLOYEE_ID [LAST_NAME [FIRST_NAME | EMAIL [DEPARTMEN
XXXXXXXXKXXXXXXXXXXXXX
VVVVVVVVVVW VYWYV VWYY | 100 |King |Ste\ten |SK|NG |
VVVVVVVVVVVVVVVVV
VVVVVVWVVVWVVVWYVWY VY | 101 |Knchhar |Neena |NKOCHHAR |
MMM —— 102 De Haan |Lex LDEHAAN |
Y | 105 Austin [Daid DAUSTIN |
[N2 lrraanharn (Manew ===
QUERY_EMP EMPLOYEES table
procedure
|EMPLOYEE_ID |FIRST_NAME [LAST NAME | EMAIL | PHONE_NI
XXXXXXXXXXXXXXXXXXKXX | 100 |Ste\ten |King |SKING |515.123.458'.
VVVVVVVVVVVVVVVVVVVVV
WYY | 101 [Meena IKochhar [MKOCHHAR |515.123 456t
vy [| 102 [Lex DeHaan |LDEHAAN 515 123.458¢
e | 105 | David [Austin [DAUSTIN 590 423 456!
VIVVWVVWVVVVVVVVY | 108 [Mancy IGreenbers [NGREENBE 515,124 456¢
18-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

The QUERY_EMP procedure directly references the EMPLOYEES table. The ADD _EMP procedure
updates the EMPLOYEES table indirectly, by way of the EMP_V\Wview.

In each of the following cases, will the ADD _EMP procedure be invalidated, and will it
successfully recompile?

1. Theinternal logic of the QUERY_EMP procedure is modified.
2. A new column is added to the EMPL OYEES table.
3. TheEMP_VWWiew is dropped.

Oracle9i: Program with PL/SQL 18-7

Displaying Direct Dependencies by Using

USER DEPENDENCI ES

SELECT nane,

FROM user _dependenci es
WHERE referenced_nane IN (' EMPLOYEES' ,' EMP_VW);

type, referenced_nane, referenced_type

| NAME | TYPE | REFERENCED_NAME | REFERENCED_T
[EMP_DETAILS_WIEW [WIEW [EMPLOYEES [TABLE
[EMP oy [WIEW [EMPLOYEES TABLE
IQUERY_EMP [PROCEDURE [EMPLOYEES TABLE
\ADD_EMP |PROCEDURE [EMP_vwy IVIEW

18-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Display Direct Dependencies by Using USER DEPENDENCI ES
Determine which database objects to recompile manually by displaying direct dependencies from the
USER DEPENDENCI ES data dictionary view.

Examinethe ALL_ DEPENDENCI ES and DBA DEPENDENCI ES views, each of which contains the
additional column OANER, that reference the owner of the abject.

Column Column Description
NAME The name of the dependent object
TYPE The type of the dependent object (PROCEDURE, FUNCTI ON,

PACKAGE, PACKAGE BODY, TRI GGER, or VI EW

REFERENCED OWNER

The schema of the referenced object

REFERENCED_NANME

The name of the referenced object

REFERENCED_TYPE

The type of the referenced object

REFERENCED LI NK_NAME The database link used to access the referenced object

Oracle9i: Program with PL/SQL 18-8

Displaying Direct and Indirect
Dependencies

1. Run the scriptutl dtree. sqgl that creates the
objects that enable you to display the direct and
indirect dependencies.

2. Execute the DEPTREE_FI LL procedure.

EXECUTE deptree_fill (' TABLE ,' SCOTT ,' EMPLOYEES')

PLIZQL procedure successfully completed.

18-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Direct and Indirect Dependencies by Using Views Provided by Oracle
Display direct and indirect dependencies from additional user views called DEPTREE and
| DEPTREE; these view are provided by Oracle.
Example

1. Makesuretheut | dt ree. sql script has been executed. This script is located in the
$ORACLE_HOVE/ r dbrrs/ admi n folder. (This script is supplied inthel ab folder of

your classfiles.)
2. Populatethe DEPTREE TEMPTAB table with information for a particular referenced object
by invoking the DEPTREE_FI LL procedure. There are three parameters for this procedure:

obj ect _type Is the type of the referenced object
obj ect _owner Is the schema of the referenced object
obj ect _name Is the name of the referenced object

Oracle9i: Program with PL/SQL 18-9

Displaying Dependencies

DEPTREE View

SELECT nested | evel, type, nane
FROM deptree
ORDER BY seq#;

| MNESTED_LEVEL | TYPE | NAME
| 0 [TABLE [EMPLOYEES
| 1 WIEW [EMP_DETAILS WIEW
| 1 |TRIGGER |CHECL<_S_A|_ARY_
| 1 [WIEW EMP_WW
| 2 |PROCEDURE ADD_EMP
| 1 [PACKAGE MGR_CONSTRAINTS_PKG
| 2 [TRIGGER |CHECK_PRES_TITLE
‘ 18-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Display atabular representation of all dependent objects by querying the DEPTREE view.

Display an indented representation of the same information by querying the | DEPTREE view, which
consists of a single column named DEPENDENCI ES.

For example,
SELECT *
FROM i deptree;

provides a single column of indented output of the dependenciesin a hierarchical structure.

Oracle9i: Program with PL/SQL 18-10

Another Scenario of Local Dependencies

XXXXXXXXKXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV
RE[lJCE S AL VVVVVVVVVWVVWWVY

i VVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV

VVVVVVXXXXXXXXXXXXXXX

p ro C ed u re XXXXXXX XX XXX XXX XXXXXX

VVVVVVVVVVVVVVVVVVVVV

p ro C ed u re XXXXXXXXXXXXXXXXXXXXX

VVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV

EWL WEES tab | e VVVVVVVVVVVVVVVVVVVVV

VVVVVVXXXXXXXXXXXXXXX

[EMPLOYEEID | LAST NAME | JOB.ID [SALARY [ivwennvrnvivoooos
| 100 |[King \AD_PRES | 24000
| 101 |[Kochhar 0P | 17000
| 102 ||De Haan AD_WP | 17000
| 103 [Hunold IT_PROG | 8000
[104 Bt T oone [cnnn

‘ 18-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Predicting the Effects of Changes on Dependent Objects
Example 1

Predict the effect that a change in the definition of a procedure has on the recompilation of a
dependent procedure.

Suppose that the RAI SE_SAL procedure updates the EMPLOYEES table directly, and that the
REDUCE_SAL procedure updates the EMPLOYEES table indirectly by way of RAI SE_SAL.

In each of the following cases, will the REDUCE _SAL procedure successfully recompile?
1. Theinternal logic of the RAI SE_SAL procedure is modified.
2. Oneof theformal parametersto the RAI SE_SAL procedureis eliminated.

Oracle9i: Program with PL/SQL 18-11

A Scenario of Local Naming
Dependencies
QUERY_EMP EMPLOYEES publi
ubliC synonym
procedure P y y
| EMPLOYEEID | LAST NAME | JOB_ID | sSALARY
XXXXXXXXKXXXXXXXXXXXXX
VVVVVVVVVVWVVWWYVVYVY | 100 |King |AD_F‘RES | 24000
VVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVV VY w | m |Kochhar |AD_VF' | 17000
MMM | 102 e Haan AD_vP [170w
Y | 103 |Hunald IT_PROG | 5000
[104 [Eve et Im oo [cnnn
EMPLOYEES
table
| EMPLOYEEID | LAST _NAME | JOB_ID | saLaRy
| 100 |King AD_PRES | 24000
| 101 |[Kachhar AD_WP | 17000
| 102 |De Haan AD_P | 17000
| 103 |Hunaold IT_PROG | 9000
[104 [Eeert [T oone [conn

‘ 18-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Predicting Effects of Changes on Dependent Objects (continued)

Example 2

Be aware of the subtle casein which the creation of atable, view, or synonym may unexpectedly
invalidate a dependent object because it interferes with the Oracle server hierarchy for resolving
name references.

Predict the effect that the name of a new object has upon a dependent procedure.

Suppose that your QUERY_EMP procedure originally referenced a public synonym called
EMPLOYEES. However, you have just created a new table called EMPLOYEES within your own
schema. Will this change invalidate the procedure? Which of the two EMPLOYEES objects will
QUERY_EMP reference when the procedure recompiles?

Now suppose that you drop your private EMPLOYEES table. Will this invalidate the procedure?
What will happen when the procedure recompiles?

Y ou can track security dependencies within the USER_TAB_PRI VS data dictionary view.

Oracle9i: Program with PL/SQL 18-12

Understanding Remote Dependencies

ﬁ:’rocedure Procedure View Table\
vy | N@EWOTK | sy /
VVVVVVVVVVVVVV J\/
K Local and remote references j
—_— N>
Direct local Direct remote
dependency dependency

‘ 18-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Understanding Remote Dependencies

In the case of remote dependencies, the objects are on separate nodes. The Oracle server does not
manage dependencies among remote schema objects other than local-procedure-to-remote-
procedure dependencies (including functions, packages, and triggers). Thelocal stored procedure
and all of its dependent objects will beinvalidated but will not automatically recompile when called
for thefirst time.

Oracle9i: Program with PL/SQL 18-13

Understanding Remote Dependencies
ﬁ:’rocedure Procedure View
oy | I\ | X000
vy | N@EWOTK | sy /
VVVVVVVVVVVVVV J\/
VALI D | NVALI D | NVALI D
K Local and remote references J
[#
— N> G,
Direct local Direct remote Definition
dependency dependency change

‘ 18-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Understanding Remote Dependencies (continued)
Recompilation of Dependent Objects: L ocal and Remote

» Veify successful explicit recompilation of the dependent remote procedures and implicit
recompilation of the dependent local procedures by checking the status of these procedures
within the USER_OBJECTS view.

» |f an automatic implicit recompilation of the dependent local procedures fails, the status
remains invalid and the Oracle server issues arun-time error. Therefore, to avoid disrupting
production, it is strongly recommended that you recompilelocal dependent objects manually,
rather than relying on an automatic mechanism.

Oracle9i: Program with PL/SQL 18-14

Concepts of Remote Dependencies

Remote dependencies are governed by the mode
chosen by the user:

e TI MESTAMP checking
®* S| GNATURE checking

‘ 18-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Tl MESTAMP Checking

Each PL/SQL program unit carries atime stamp that is set when it is created or recompiled.
Whenever you alter a PL/SQL program unit or areevant schema object, all of its dependent
program units are marked as invalid and must be recompiled before they can execute. The actual
time stamp comparison occurs when a statement in the body of alocal procedure calls aremote
procedure.

SI GNATURE Checking

For each PL/SQL program unit, both the time stamp and the signature are recorded. The signature
of aPL/SQL construct contains information about the following:

» The name of the construct (procedure, function, or package)
» Thebasetypes of the parameters of the construct

» Themodes of the parameters (I N, QUT, or | NOUT)

e Thenumber of the parameters

Therecorded time stamp in the calling program unit is compared with the current time stamp in the
called remote program unit. If the time stamps match, the call proceeds normally. If they do not
match, the Remote Procedure Calls (RPC) layer performs a simple test to compare the signature to
determine whether the call is safe or nat. If the signature has not been changed in an incompatible
manner, execution continues; otherwise, an error statusis returned.

Oracle9i: Program with PL/SQL 18-15

REMOTE DEPENDENCI ES MODE Parameter

Setting REMOTE_DEPENDENCI ES MODE:

® Asaninit.oraparameter
REMOTE_DEPENDENCI ES MODE = val ue

* Atthe system level

ALTER SYSTEM SET
REMOTE_DEPENDENCI ES_MODE = val ue

* At the session level

ALTER SESSI ON SET
REMOTE_DEPENDENCI ES_MODE = val ue

‘ 18-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Setting the REMOTE_DEPENDENCI ES_MODE

val ue TI MESTAMP
S| GNATURE

Specify the value of the REMOTE _DEPENDENCI ES MODE parameter, using one of the three
methods described in the slide.

Note: The calling site determines the dependency model.

Oracle9i: Program with PL/SQL 18-16

Remote Dependencies and

Time Stamp Mode

/Procedure) /Procedure View Table\
XXXXXXXXXXX XXX
VVVVVVVVVVVVVV
XXXXXXXXXXX XXX
VVVVVVVVVVVVVV ——/\/‘» VVVVVVVVVVVVVV
XXXXXXXXXXX XXX XXXXXXXXXXX XXX
VVVVVVVVVVVVVV VVVVVVVVVVVVVV
XXXXXXXXXXXXXX [N etW O r k] XXXXXXXXXXXXXX
VVVVVVVVVVVVVV VVVVVVVVVVVVVV
XXXXXXXXXXX XXX XXXXXXXXXXX XXX //
VVVVVVVVVVVVVV VVVVVVVVVVVVVV J\/

A\

‘ 18-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Time Stamp Mode for Automatic Recompilation of Local and Remote Objects

If time stamps are used to handle dependencies among PL/SQL program units, then whenever you
alter a program unit or arelevant schema object, all of its dependent units are marked asinvalid and
must be recompiled before they can be run.

Oracle9i: Program with PL/SQL 18-17

Remote Dependencies and
Time Stamp Mode

/Procedure) /Procedure View Table\
XXXXXXXXXXX XXX V
:::::::::::::: ——/\/9 Wy [—>>
s (Neword SRS | |) 772
VVVVVVVVVVVVVV VVVVVVVVVVVVVV J\/ ’

VALI D | NVALI D | NVALI D

N)\l J

> A
Definition
change

‘ 18-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Time Stamp Mode for Automatic Recompilation of Local and Remote Objects

In the example in the dide, the definition of the table changes. Hence, al of its dependent units are
marked as invalid and must be recompiled before they can be run.

* When remote objects change, it is strongly recommended that you recompile local dependent
objects manually in order to avoid disrupting production.

» Theremote dependency mechanism is different from the automatic local dependency
mechanism already discussed. Thefirst time arecompiled remote subprogram is invoked by a
local subprogram, you get an execution error and the local subprogramis invalidated; the
second timeit is invoked, implicit automatic recompilation takes place.

Oracle9i: Program with PL/SQL 18-18

Remote Procedure B Compiles
at 8:00 a.m.

Remote procedure B

Compiles
Valid

18-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Local Procedures Referencing Remote Procedures

A local procedure that references a remote procedure is invalidated by the Oracle server if the
remote procedure is recompiled after the local procedure is compiled.

Automatic Remote Dependency Mechanism

When a procedure compiles, the Oracle server records the time stamp of that compilation within
the P code of the procedure.

In the slide, when the remote procedure B was successfully compiled at 8 am., this time was
recorded as itstime stamp

Oracle9i: Program with PL/SQL 18-19

Local Procedure A Compiles
at 9:00 a.m.
Local procedure A Remote procedure B
@ >
Time stamp Record Time stamp
of A Time stamp of B
of B

Valid Valid

18-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Automatic Remote Dependency Mechanism

When alocal procedure referencing a remote procedure compiles, the Oracle server also records thetime
stamp of the remote procedure into the P code of the local procedure.

Inthe slide, local procedure A which is dependent on remote procedure B is compiled at 9:00 am. The
time stamps of both procedure A and remote procedure B are recorded in the P code of procedure A.

Oracle9i: Program with PL/SQL 18-20

Execute Procedure A

Local procedure A Remote procedure B

) —

Time stamp

comparison
Time stamp Time stamp Time stamp
of A of B of B
Execute B
| |
Valid Valid
18-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Automatic Remote Dependency

When the local procedureisinvoked, at runtimethe Oracle server compares the two time stamps
of the referenced remote procedure.

If the time stamps are equal (indicating that the remote procedure has not recompiled), the Oracle
server executes thelocal procedure.

In the example in the dide, the time stamp recorded with P code of remote procedure B is the same
asthat recorded with local procedure A. Hence, local procedure A is valid.

Oracle9i: Program with PL/SQL 18-21

Remote Procedure B Recompiled
at 11:00 a.m.

Remote procedure B

Compiles
Valid

18-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Local Procedures Referencing Remote Procedures

Assume that the remote procedure B is successfully recompiled at 11a.m. The new timestamp is
recorded along with its P code.

Oracle9i: Program with PL/SQL 18-22

Execute Procedure A

Local procedure A Remote procedure B
@ >
Time stamp
comparispn
Time stamp Time stamp Time stamp
of A of B of B
ERRCR
Wd Invalid Valid
18-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Automatic Remote Dependency

If the time stamps are not equal (indicating that the remote procedure has recompiled), the Oracle
server invalidates the local procedure and returns a runtime error.

If thelocal procedure, which is now tagged asinvalid, is invoked a second time, the Oracle server
recompiles it before executing, in accordance with the automatic local dependency mechanism.
Note: If alocal procedure returns arun-time error the first time that it is invoked, indicating that the
remote procedure's time stamp has changed, you should devel op a strategy to reinvoke the local
procedure.

In the example in the dlide, remote procedure is recompiled at 11 am. and thistime is recorded as
itstime stamp in the P code. The P code of local procedure A still has 8 am. as time stamp for the
remote procedure B.

Because the time stamp recorded with P code of local procedure A is different from that recorded

with remote procedure B, the local procedure is marked invalid. When the local procedureis
invoked for the second time, it can be successfully compiled and marked valid.

Disadvantage of time stamp mode

A disadvantage of the time stamp mode is that it is unnecessarily restrictive. Recompilation of
dependent objects across the network are often performed when not strictly necessary, leading to
performance degradation.

Oracle9i: Program with PL/SQL 18-23

Sighature Mode

®* The signature of a procedure is:
— The name of the procedure
— The datatypes of the parameters
— The modes of the parameters

* The signature of the remote procedure is saved in
the local procedure.

* When executing a dependent procedure, the
signature of the referenced remote procedure is
compared.

‘ 18-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Signatures

To alleviate some of the problems with the time stamp-only dependency model, you can usethe
signature model. This allows the remote procedure to be recompiled without affecting the local
procedures. Thisisimportant if the database is distributed.

The signature of a subprogram contains the following information:
e The name of the subprogram
» The datatypes of the parameters
e The modes of the parameters
e The number of parameters
e The datatype of the return value for afunction

If aremote program is changed and recompiled but the signature does not change, then the local
procedure can execute the remote procedure. With the time stamp method, an error would have been
raised because the time stamps would not have matched.

Oracle9i: Program with PL/SQL 18-24

Recompiling a PL/SQL
Program Unit

Recompilation:

* |s handled automatically through implicit run-time
recompilation

* |s handled through explicit recompilation with the
ALTER statement

ALTER PROCEDURE [SCHEMA.] pr ocedur e_nanme COWVPI LE;

ALTER FUNCTI ON [SCHEMA.] function_nanme COWPI LE;

ALTER PACKAGE [SCHEMA.] package_name COWPI LE [PACKAGE] ;
ALTER PACKAGE [SCHEMA. | package_nanme COWPI LE BODY;

ALTER TRI GGER trigger_nanme [COVWPI LE[DEBU]G] ;

‘ 18-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Recompiling PL/SQL Objects
If the recompilation is successful, the object becomes valid. If not, the Oracle server returns an error
and the object remainsinvalid.
When you recompile a PL/SQL object, the Oracle server first recompiles any invalid objects on which
it depends.
Procedure
Any local objects that depend on a procedure (such as procedures that call the recompiled procedure or
package bodies that define the procedures that call the recompiled procedure) are also invalidated.
Packages
The COVPI LE PACKAGE option recompiles both the package specification and the body, regardless of
whether it isinvalid. The COVPI LE BODY option recompiles only the package body.
Recompiling a package specification invalidates any local objects that depend on the specification, such
as procedures that call procedures or functions in the package. Note that the body of a package also
depends on its specification.
Triggers
Explicit recompilation eliminates the need for implicit run-time recompilation and prevents associated
run-time compilation errors and performance overhead.
The DEBUG option instructs the PL/SQL compiler to generate and store the code for use by the
PL/SQL debugger.

Oracle9i: Program with PL/SQL 18-25

Unsuccessful Recompilation

Recompiling dependent procedures and functions is
unsuccessful when:

* Thereferenced object is dropped or renamed
* The datatype of the referenced column is changed
®* Thereferenced column is dropped

* Areferenced view is replaced by a view with
different columns

* The parameter list of areferenced procedure is
modified

‘ 18-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Unsuccessful Recompilation

Sometimes arecompilation of dependent procedures is unsuccessful, for example, when areferenced
tableis dropped or renamed.

The success of any recompilation is based on the exact dependency. If areferenced view is recreated,
any object that is dependent on the view needs to be recompiled. The success of the recompilation
depends on the columns that the view now contains, as well as the columns that the dependent objects
require for their execution. If the required columns are not part of the new view, the object remains
invalid.

Oracle9i: Program with PL/SQL 18-26

Successful Recompilation

Recompiling dependent procedures and functions is
successful if:

* Thereferenced table has new columns

®* The datatype of referenced columns has not
changed

* A private table is dropped, but a public table,
having the same name and structure, exists

* The PL/SQL body of areferenced procedure has
been modified and recompiled successfully

‘ 18-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Successful Recompilation
Therecompilation of dependent objects is successful if:
* New columns are added to areferenced table
e All | NSERT statements include a column list
* No new column is defined as NOT NULL

When a private table is referenced by a dependent procedure, and the private tableis dropped, the
status of the dependent procedure becomes invalid. When the procedure is recompiled, either
explicitly or implicitly, and a public table exists, the procedure can recompile successfully but is now
dependent on the public table. The recompilation is successful only if the public table contains the
columns that the procedure requires; otherwise, the status of the procedure remains invalid.

Oracle9i: Program with PL/SQL 18-27

Recompilation of Procedures

Minimize dependency failures by:
®* Declaring records by using the ROM YPE attribute

®* Declaring variables with the %' YPE attribute
®* Querying with the SELECT * notation
®* Including a column list with | NSERT statements

‘ 18-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Recompilation of Procedures
Y ou can minimize recompilation failure by following the guidelines that are shown in the dlide.

Oracle9i: Program with PL/SQL 18-28

Packages and Dependencies
I |

Package specification
Stand-alones i
Procedure A Valid

procedure declaration

Valid e | | ™~

Package body

Procedure A
definition

\ Definition changed /

‘ 18-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Dependencies
Y ou can greatly simplify dependency management with packages when referencing a package
procedure or function from a stand-alone procedure or function.

» If the package body changes and the package specification does not change, the stand-alone
procedure referencing a package construct remains valid.

» If the package specification changes, the outside procedure referencing a package construct is
invalidated, asisthe package body.

Oracle9i: Program with PL/SQL 18-29

Packages and Dependencies

e ™
Package specification .
Valid
Procedure A
declaration
_ J
— —
Package bod .
gebody Invalid
Stand-alone Procedure A
procedure |« definition
Definition _ -/
changed | |

‘ 18-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Dependencies (continued)

If a stand-alone procedure referenced within the package changes, the entire package body is
invalidated, but the package specification remains valid. Therefore, it is recommended that you bring
the procedure into the package.

Oracle9i: Program with PL/SQL 18-30

Summary

In this lesson, you should have learned how to:
e Keep track of dependent procedures

® Recompile procedures manually as soon as
possible after the definition of a database object
changes

‘ 18-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Summary

Avoid disrupting production by keeping track of dependent procedures and recompiling them
manually as soon as possible after the definition of a database object changes.

Situation Automatic Recompilation

Procedure depends on alocal object Yes, at first re-execution

Procedure depends on aremote procedure |Yes, but at second re-execution; use manual
recompilation for first re-execution, or reinvoke it
second time

Procedure depends on aremote object other |No
than a procedure

Oracle9i: Program with PL/SQL 18-31

Practice 18 Overview

This practice covers the following topics:

®* Using DEPTREE_FI LL and | DEPTREE to view
dependencies

* Recompiling procedures, functions, and packages

‘ 18-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 18 Overview

In this practice you use the DEPTREE_FI LL procedure and the | DEPTREE view to investigate
dependenciesin your schema.

In addition, you recompile invalid procedures, functions, packages, and views.

Oracle9i: Program with PL/SQL 18-32

Practice 18
1. Answer thefollowing questions.
a. Canatableor asynonym beinvalid?
b. Assuming the following scenario, is the stand-alone procedure MY _ PROC invalidated?

The stand-alone procedure MY _PROC depends on the packaged procedure

MY_PROC_PACK.

The MY_PROC_PACK procedure s definition is changed by recompiling the package

body.

The MY_PROC_PACK procedure s declaration is not altered in the package specification.
2. Executetheut | dt ree. sql script. Thisscript isavailablein your | ab folder. Print atree

structure showing all dependencies involving your NEW EMP procedure and your
VALI D_DEPTI D function.

| DEPENDEMNCIES
IPROCEDURE PLSQL MEW _EMP

Query the | DEPTREE view to see your results. (NEW EMP and VALI D_DEPTI D were created in
lesson 10, “Creating Functions.” Y ou can run the solution scripts for the practice if you need to
create the procedure and function.)

| DEPENDENCIES
[FUNCTION PLSQL VALID_DEPTID
IPROCEDURE PLSOL MEW EMP

If you havetime:
3. Dynamically validate invalid objects.
a. Makea copy of your EMPLOYEES table, called EMP_COP.
b. Alter your EMPLOYEES table and add the column TOTSAL with datatype NUVBER(9, 2) .
c. Createascript fileto print the name, type, and status of all objects that are invalid.
d. Createaprocedurecaled COVPI LE_OBJ that recompiles all invalid procedures, functions,
and packages in your schema.
Make use of the ALTER_COMPI LE procedure in the DBMS_DDL package.
Execute the COVPI LE_OBJ procedure.
e. Runthe script file that you created in question 3¢ again and check the status column value.
Do you still havel NVALI D objects? If you do, why arethey | NVALI D?

Oracle9i: Program with PL/SQL 18-33

Oracle9i: Program with PL/SQL 18-34

A

Practice Solutions

Practice 1 Solutions
1. Evaluate each of the following declarations. Determine which of them are not legal and explain

why.
a. DECLARE
v_id NUMBER(4) ;
Legal
b. DECLARE
V_X, V_Yy, v_z VARCHAR2(10);
Illegal because only oneidentifier per declaration is allowed.
c. DECLARE
v_birthdate DATE NOT NULL;
Illegal becausethe NOT NULL variable must beinitialized.
d. DECLARE

v_in_stock BOOLEAN : = 1;

Illegal because 1 is not a Boolean expression.
PL/SQL returnsthefollowing error:
PLS- 00382: expression is of wong type

Oracle9i: Program with PL/SQL A-2

Practice 1 Solutions (continued)

2. In each of the following assignments, indicate whether the statement is valid and what the valid data
type of the result will be.

av_days to go := v_due date - SYSDATE;
Valid; Number

b.v_sender := USER || ': ' || TO_CHAR(v_dept _no);
Valid; Character string

c.v_sum : = $100, 000 + $250, 000;
Illegal; PL/SQL cannot convert special symbols from VARCHARZ2 to NUMBER.

dv_flag := TRUE
Valid; Boolean

ev.nl:=v.n2 > (2 * v_n3);
Valid; Boolean

f.v_val ue : = NULL;
Valid; Any scalar datatype

3. Create an anonymous block to output the phrase “My PL/SQL Block Works” to the screen.

VARI ABLE g_nessage VARCHAR2(30)
BEGA N
:g_message := 'My PL/SQL Bl ock Wbrks';
END;
/
PRI NT g _nessage

Alter nate Solution:

SET SERVEROUTPUT ON
BEG N

DBNVS_OUTPUT. PUT_LINE(' My PL/ SQL Bl ock Works');
END;
/

Oracle9i: Program with PL/SQL A-3

Practice 1 Solutions (continued)
If you have time, complete the following exercise:

4. Createablock that declares two variables. Assign the value of these PL/SQL variables to
iSQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block in afilenamed plqg4. sql , by clicking the Save
Scri pt button. Remember to save the script witha. sgl extension.

V_CHAR Char acter (vari able Iength)
V_NUM Nunber

Assign values to these variables as follows:
Vari abl e Val ue

V_CHAR The literal '42 is the answer'
V_NUM The first two characters fromV_CHAR

VARI ABLE g_char VARCHAR2(30)
VARI ABLE g_num NUMBER
DECLARE
v_char VARCHAR2(30);
v_num NUMBER(11, 2);

BEG N
v_char := "'42 is the answer';
v_num := TO NUMBER(SUBSTR(v_ char, 1, 2));
:g_char := v_char;
:g_num = v_num
END;
/
PRI NT g_char
PRI NT g_num

Oracle9i: Program with PL/SQL A-4

Practice 2 Solutions

DECLARE
v_wei ght NUMBER(3) : = 600;
v_message VARCHAR2(255) := 'Product 10012';
BEG N
/ * SUBBL OCK* /
DECLARE
v_wei ght NUVBER(3) := 1;
v_message VARCHAR2(255) := 'Product 11001';
v_new | och VARCHAR2(50) := 'Europe';
BEG N
v_weight := v _weight + 1;
v_new locn := "Wstern ' || v_new.|ocn;
: END;
v_weight := v _weight + 1;
vV_message := v_nessage || ' is in stock';

vV_new |l och : =
®END, ~

/

1. Evaluatethe PL/SQL block above and determine the data type and value of each of the following
variables according to the rules of scoping.

a Thevaueof V_\EI GHT at position 1 is:
2
The data type is NUVBER.

b. Thevalueof V_NEWLQOCN at position 1 is:
Western Europe
The datatype is VARCHAR2.

c. Thevaueof V_WEI GHT at position 2 is:
601
The data type is NUMBER.

d. Thevalueof V_MESSACGE at position 2 is:
Product 10012 isin stock
The datatype is VARCHARZ.

e. Thevalueof V_NEW LCOCN at position2is:
Illegal becausev_new | ocn isnot visible outside the subblock.

"Western ' || v_new_ | ocn;

Oracle9i: Program with PL/SQL A-5

Practice 2 Solutions (continued)

Scope Example
DECLARE
V_cust oner VARCHAR2(50) : = 'Wnmansport';
v_credit _rating VARCHAR2(50) : = ' EXCELLENT' ;
BEG N
DECLARE
v_custoner NUMBER(7) := 201,
v_name VARCHAR2(25) := 'Unisports';
BEG N
~ V_cust orer ("V_nang>y v “Credit_rating S
END, T Tt e

- - - ~ - -

~

~ - ~
il S_——— ~ - _——

Oracle9i: Program with PL/SQL A-6

Practice 2 Solutions (continued)

2. Suppose you embed a subblock within a block, as shown on the previous page. Y ou declare two
variables, V_CUSTOMER and V_CREDI T_RATI NG, in the main block. Y ou also declare two variables,
V_CUSTOMER and V_NANME, in the subblock. Determine the values and data types for each of the
following cases.

a. Thevaueof V_CUSTOVERin the subblock is:
201
The datatype is NUVBER.
b. Thevalueof V_NAME in the subblock is:
Unisports and
The datatype is VARCHAR2.
c. Thevalueof V_CREDI T_RATI NGin the subblock is:
EXCELLENT
The datatype is VARCHAR2.
d. Thevaueof V_CUSTOVERinthe main block is:
Womansport
The datatype is VARCHAR2.
e. Thevalueof V_NAME inthemainblock is:
V_NAME is not visiblein the main block and you would seean error.
f. Thevalueof V_CREDI T_RATI NGinthe main block is:
EXCELLENT
The datatype is VARCHAR2.

Oracle9i: Program with PL/SQL A-7

Practice 2 Solutions (continued)

3. Create and execute a PL/SQL block that accepts two numbers through i SQL*Plus substitution
variables.

a. Usethe DEFI NE command to provide the two values.
DEFI NE p_numl=2 -- exanpl e
DEFI NE p_nunm2=4 -- exanpl e

b. Passthesetwo values defined in step a above, to the PL/SQL block through iSQL*Plus
substitution variables. The first number should be divided by the second number and have the
second number added to the result. The result should be stored in a PL/SQL variable and printed
on the screen.

Note: SET VERI FY OFF inthe PL/SQL block.

SET ECHO OFF

SET VERI FY OFF

SET SERVEROQUTPUT ON
DECLARE

v_nunl NUMBER(9, 2) := & nuni;
v_nun2 NUMBER(9, 2) := & nun®;
v_result NUMBER(9, 2) ;
BEG N
v result := (v_numl/v_nunR) + v_nun®;

/* Printing the PL/SQ. variable */
DBVS OUTPUT. PUT _LINE (v_result);
END;
/
SET SERVEROQUTPUT OFF
SET VERI FY ON
SET ECHO ON

Oracle9i: Program with PL/SQL A-8

Practice 2 Solutions (continued)
4. BuildaPL/SQL block that computes the total compensation for one year.

a. Theannual salary and the annual bonus percentage values are defined using the DEFI NE

command.

b. Passthe values defined in the above step to the PL/SQL block through i SQL*Plus
substitution variables. The bonus must be converted from a whole number to a decimal (for
example, 15t0.15). If thesalary isnul | , set it to zero before computing the total
compensation. Execute the PL/SQL block. Reminder: Use the NVL function to handle

nul | values.

Note: Total compensation is the sum of the annual salary and the annual bonus.

Method 1: When an iSQL*Plus variableis used:

a. VARI ABLE g_total NUMBER
DEFI NE p_sal ar y=50000
DEFI NE p_bonus=10

b. SET VERIFY OFF
DECLARE

v_salary NUMBER := &p _sal ary;

v_bonus NUMBER : = &p_bonus;
BEG N

:g_total := NVL(v_salary, 0) * (1 + NVL(v_bonus,
END;

/
PRI NT g _total
SET VERI FY ON

Alter nate Solution: When a PL/SQL variableis used:

a. DEFI NE p_sal ary=50000
DEFI NE p_bonus=10

b. SET VERI FY OFF
SET SERVERCUTPUT ON

DECLARE
v_sal ary NUMBER :
v_bonus NUMBER :
BEG N
dbns_out put. put _|ine(TO CHAR(NVL(v_salary, 0) *

&p sal ary;
&p_bonus;

0) / 100);

(1 + NVL(v_bonus, 0) / 100)));

END,

/

SET VERI FY ON

SET SERVERCUTPUT OFF

Oracle9i: Program with PL/SQL A-9

Practice 3 Solutions
1. CreateaPL/SQL block that selects the maximum department number in the DEPARTMENTS table and

storesit in aniSQL*Plus variable. Print the results to the screen. Save your PL/SQL block in afile
named p3ql. sql by clickingtheSave Scri pt button. Savethescript witha. sql extension.

VARI ABLE g_max_dept no NUMBER

DECLARE
v_max_dept no NUMBER,

BEG N
SELECT nmax(departnent _id)
I NTO v_max_dept no
FROM depart nent s;
:g_max_deptno : = v_max_deptno;

END;

/

PRI NT g nax_dept no

Alter nate Solution:
SET SERVEROUTPUT ON

DECLARE
v_max_dept no NUMBER,

BEG N
SELECT MAX(departnent id)
dbrs_out put. put _Iine(v_nax_deptno);
END;
/

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the DEPARTVENTS
table. Savethe PL/SQL block in afilenamed p3g2. sqgl by clicking the Save Script button. Save the

script witha. sql extension.
a. Use the DEFI NE command to provide the department name. Name the new department Educat i on.

SET ECHO CFF
SET VERI FY OFF
DEFI NE p_dnane = Education

b. Pass the value to the PL/SQL block through aiSQL* Plus substitution variable. Rather than printing
the department number retrieved from exercise 1, add 10 to it and use it as the department number for
the new department.

c. Leave thelocation number as null for now.

I NTO v_nmax_deptno FROM departnents;

Oracle9i: Program with PL/SQL A-10

Practice 3 Solutions (continued)

DECLARE
v_max_dept no departnents. departnent i dWdYPE;
BEG N
SELECT MAX(departnent _id) + 10
I NTO v_max_deptno
FROM departnments;
I NSERT | NTO departnents (departnent id, department nane,
| ocation_id)
VALUES (v_nax_deptno, '&p dname', NULL);
COW T;
END;
/
SET VERI FY ON
SET ECHO ON

d. Executethe PL/SQL block.
e. Display the new department that you created.
SELECT *
FROM departnents
WHERE departnent _nane = ' Education';
3. Create a PL/SQL block that updates the location ID for the new department that you added in the

previous practice. Save your PL/SQL block in afile named p3g3. sql by clickingthe Save Scri pt
button. Savethe script witha. sgl extension.

a. UseaniSQL*Plus variable for the department ID number that you added in the previous practice.
b. Usethe DEFI NE command to provide the location ID. Name the new location ID 1700.

SET VERI FY OFF

DEFI NE p_deptno = 280

DEFI NE p_l oc = 1700

c. Passthevalueto the PL/SQL block through aiSQL*Plus substitution variable. Test the PL/SQL

block.
BEG N
UPDATE depart nents
SET location_id = & | oc
WHERE departnent _id = &p_deptno;
COW T;
END;
/

SET VERI FY ON
d. Display the department that you updated.

SELECT * FROM departnents
WHERE departnent _id = &p_deptno;

Oracle9i: Program with PL/SQL A-11

Practice 3 Solutions (continued)

4. CreateaPL/SQL block that deletes the department that you created in exercise 2. Save the PL/SQL
block in afilenamed p3g4. sql by clickingthe Save Scri pt button. Savethe script witha. sql

extension.

a. Usethe DEFI NE command to provide the department ID.
SET VERI FY OFF
VARl ABLE g_result VARCHAR2(40)
DEFI NE p_deptno = 280

b. Passthe valueto the PL/SQL block through aiSQL*Plus substitution variable Print to the screen the
number of rows affected.

c. Testthe PL/SQL block.

DECLARE

v_result NUMBER(2);
BEG N

DELETE

FROM departments

WHERE departnent _id = &p_dept no;
v_result := SQYROWNCOUNT;
:g_result := (TOCHAR(v_ result) || ' row(s) deleted.');
COW T;
END;
/
PRINT g result
SET VERI FY ON

d. Confirm that the department has been deleted.

SELECT *
FROM departments
WHERE departnent _id = 280;

Oracle9i: Program with PL/SQL A-12

Practice 4 Solutions

1. Executethecommandinthefilel ab04_1. sql to createthe MESSAGES table. Write a PL/SQL
block to insert numbers into the MESSAGES table.

CREATE TABLE nessages (results VARCHAR2 (60));
a. Insert the numbers 1 to 10, excluding 6 and 8.

b. Commit before the end of the block.
BEG N
FORi IN1..10 LOOP
IFi =6 or i =8 THEN
nul | ;
ELSE
I NSERT | NTO nessages(results)
VALUES (i);
END | F;
COW T;
END LOOP;
END;
/

Note: i isbeing implicitly converted. A better way to code would be to explicitly convert the NUVBER
to VARCHAR2.

c. Sdect from the MESSAGES table to verify that your PL/SQL block worked.

SELECT *
FROM nessages;

2. Create a PL/SQL block that computes the commission amount for a given employee based
on the employee' s salary.

a. Usethe DEFI NE command to provide the employee ID. Passthe value to the PL/SQL block
through a iSQL*Plus subgtitution variable.

SET SERVERCQUTPUT ON
SET VERI FY OFF
DEFI NE p_enpno = 100

b. If the employee's salary is less than $5,000, display the bonus amount for the employee
as 10% of the salary.

c. If the employee's salary is between $5,000 and $10,000, display the bonus amount for the
employee as 15% of the salary.

d. If the employee's salary exceeds $10,000, display the bonus amount for the employee as
20% of the salary.

e. If the employee' s salary isNULL, display the bonus amount for the employee as 0.

f. Test the PL/SQL block for each case using the following test cases, and check each
bonus amount.

Note: Include SET VERI FY OFF inyour solution.

Oracle9i: Program with PL/SQL A-13

Practice 4 Solutions (continued)

DECLARE
v_enpno enpl oyees. enpl oyee_ i dWYPE : = &p_enpno;
v_sal enpl oyees. sal ar y%d YPE
v_bonus_per NUMBER(7, 2) ;
v_bonus NUMVBER(7, 2) ;
BEG N
SELECT sal ary
| NTO v_sa

FROM enpl oyees
WHERE enpl oyee id = v_enpno;
| F v_sal < 5000 THEN

v_bonus_per := .10;
ELSI F v_sal BETWEEN 5000 and 10000 THEN
v_bonus_per := .15;
ELSIF v_sal > 10000 THEN
v_bonus_per := .20;
ELSE
v_bonus_per := 0;
END | F;
v_bonus := v_sal * v_bonus_per;

DBVS _QUTPUT. PUT_LINE (' The bonus for the enployee with enployee id '
|| v_enpno || ' and salary ' || v_sal || " is ' || v_bonus);
END;

/

Oracle9i: Program with PL/SQL A-14

Practice 4 Solutions (continued)
If you have time, complete the following exercises:

3. Create an EMP tablethat is areplica of the EMPLOYEES table. Y ou can do this by executing the
script| ab04_3. sql . Add anew column, STARS, of VARCHAR2 data type and length 50 to
the EMP tablefor storing asterisk (*).

ALTER TABLE enp
ADD stars VARCHAR2(50) ;

4. CreateaPL/SQL block that rewards an employee by appending an asterisk in the STARS column
for every $1000 of the employee's salary. Save your PL/SQL block in afilecalled p4g4. sql by
clickingonthe Save Scri pt button. Remember to savethe script witha. sqgl extension.

a. Usethe DEFI NE command to provide the employee ID. Pass the value to the PL/SQL block
through a iSQL*Plus substitution variable.
SET VERI FY OFF
DEFI NE p_enpno = 104
b. Initializeav_ast eri sk variablethat containsa NULL.

c. Append an asterisk to the string for every $1000 of the salary amount. For example, if the
employee has a salary amount of $8000, the string of asterisks should contain eight asterisks.
If the employee has a salary amount of $12500, the string of asterisks should contain 13

asterisks.
d. Update the STARS column for the employee with the string of asterisks.

e. Commit.
f. Test the block for the following values:

DEFI NE p_enpno=104
DEFI NE p_enpno=174
DEFI NE p_enpno=176

Employee Number Salary Resulting Bonus
100 24000 4800
149 10500 2100
178 7000 1050

Note: SET VERI FY OFF inthe PL/SQL block

Oracle9i: Program with PL/SQL A-15

Practice 4 Solutions (continued)

DECLARE
v_enpno enp. enpl oyee_i dYWYPE : = TO NUMBER(& _enpno);
v_asterisk enp. stars%YPE : = NULL;
v_sal enp. sal ar yWd YPE;
BEGA N
SELECT NVL(ROUND(sal ary/1000), 0)
| NTO v_sal
FROM enp

WHERE enpl oyee id = v_enpno;
FORi IN1..v_sal LOCOP
v_asterisk := v _asterisk ||'*";
END LQOOP;
UPDATE enp
SET stars = v_asterisk
WHERE enpl oyee id = v_enpno;
COW T;

END;

/

SET VERI FY ON

g. Display the rows from the EMP table to verify whether your PL/SQL block has executed
successfully.

SELECT enpl oyee i d, salary, stars
FROM enp
WHERE enpl oyee id IN (104, 174, 176);

Oracle9i: Program with PL/SQL A-16

Practice 5 Solutions
1. WriteaPL/SQL block to print information about a given country.
a. DeclareaPL/SQL record based on the structure of the COUNTRI ES table.

b. Usethe DEFI NE command to provide the country ID. Pass the value to the PL/SQL block
through a iSQL*Plus substitution variable.

SET SERVEROUTPUT ON
SET VERI FY OFF
DEFI NE p_countryid = CA

c. UseDBMs OUTPUT. PUT_LI NE to print sdected information about the country. A sample
output is shown below.

DECLARE

country record countri es¥RONMYPE;
BEG N

SELECT *

I NTO country record
FROM countries
WHERE country id = UPPER(' & countryid');

DBVMS_OUTPUT. PUT_LINE (' Country Id: ' ||
country record.country id || ' Country Nanme: ' ||
country record.country nane || ' Region: ' ||
country record.region_id);

END;
/
d. Execute and test the PL/SQL block for the countries with the IDs CA, DE, UK, US

Oracle9i: Program with PL/SQL A-17

Practice 5 Solutions (continued)
2. CreateaPL/SQL block to retrieve the name of each department from the DEPARTMENTS table and print
each department name on the screen, incorporating an | NDEX BY table. Savethe codein a
filecalled p5g2. sql by clicking the Save Script button. Save the script witha. sqgl extension.
a. Declarean| NDEX BY table, MY_DEPT_TABLE, to temporarily store the name of the
departments.
b. Using aloop, retrieve the name of all departments currently in the DEPARTMENTS table and store
theminthel NDEX BY table. Usethefollowing table to assign the value for DEPARTMENT | D
based on the value of the counter used in the loop.

CQUNTER DEPARTMENT_I D

10
20
50
60
80
90

110

~N| OO BWIN|F-

c. Using another loop, retrieve the department names from the PL/SQL table and print them to the
screen, using DBVS_QUTPUT. PUT_LI NE.

SET SERVEROUTPUT ON
DECLARE
TYPE DEPT_TABLE TYPE | S
TABLE OF departnents. depart nment _name%l YPE
| NDEX BY BI NARY_I NTECER;
my_dept table dept_table type;

v_count NUMBER (2) ;
v_dept no departnents. departnment i d%lYPE;
BEG N

SELECT COUNT(*) INTO v_count FROM departnents;
FORi IN 1..v_count
LOOP
IFi =1 THEN
v_deptno := 10;
ELSIF i = 2 THEN
v_deptno : = 20;
ELSIF i =3 THEN
v_deptno : = 50;
ELSIF i =4 THEN
v_deptno : = 60;
ELSIF i =5 THEN
v_deptno : = 80;
ELSIF i =6 THEN
v_deptno := 90;
ELSIF i =7 THEN
v_deptno := 110;
END | F;

Oracle9i: Program with PL/SQL A-18

Practice 5 Solutions (continued)

SELECT departnent _name | NTO my_dept _table(i) FROM departnents
WHERE departnent _id = v_deptno;

END LOOP;
FOR i IN 1..v_count
LOOP
DBVMS _OUTPUT. PUT_LINE (ny_dept table(i));
END LOOP;
END;

/
SET SERVEROQUTPUT OFF

If you have time, complete the following exercise.

3. Modify the block you created in practice 2 to retrieve all information about each department from
the DEPARTMENTS table and print the information to the screen, incorporating an | NDEX BY

table of records.

a. Declarean| NDEX BY table, MY_DEPT_TABLE, to temporarily store the number, name, and
location of all the departments.

b. Using aloop, retrieve all department information currently in the DEPARTMENTS table and
storeit in the PL/SQL table. Use the following table to assign the value for DEPARTMENT | D
based on the value of the counter used in the loop. Exit theloop when the count er reaches
thevalue7.

CQUNTER DEPARTMENT_I D

10
20
50
60
80
90

110

~N| OO0 B (WIN|F-

c. Using another loop, retrieve the department information from the PL/SQL table and print it
to the screen, using DBMS_QUTPUT. PUT_LI NE.

Oracle9i: Program with PL/SQL A-19

Practice 5 Solutions (continued)
SET SERVERQUTPUT ON
DECLARE
TYPE dept _table type is table of departnent s¥ROMYPE
| NDEX BY Bl NARY_| NTECER;
my_dept _table dept tabl e type;
v_dept no departnents. departnment i d%lYPE
v_count NUMBER : = 7;
BEGA N
FORi IN 1..v_count
LOOP
IFi =1 THEN
v_deptno := 10;
ELSIF i = 2 THEN
v_deptno : = 20;
ELSIF i = 3 THEN
v_deptno : = 50;
ELSIF i =4 THEN
v_deptno : = 60;
ELSIF i =5 THEN
v_deptno : = 80;
ELSIF i =6 THEN
v_deptno : = 90;
ELSIF i =7 THEN
v_deptno : = 110;
END | F;
SELECT *
| NTO ny_dept table(i)
FROM department s
WHERE departnent _id = v_deptno;

END LOOP
FOR i IN 1..v_count
LOOP

DBVMS _OUTPUT. PUT_LI NE (' Departnent Number: ' ||
my_dept table(i).department _id

|| ' Department Nane: ' || my_dept _table(i).departnment _nane
|| " Manager 1d: '"||] ny_dept _table(i).mnager _id
|| " Location Id: ' || my_dept table(i).location_id);
END LOOP
END;

/

Oracle9i: Program with PL/SQL A-20

Practice 6 Solutions

1. Runthecommandinthescript| ab06_1.sql to create anew tablefor storing the salaries of the
employees.

CREATE TABLE top_dogs
(salary NUMBER(S, 2));
2. Create a PL/SQL block that determines the top employees with respect to salaries.

a. Accept anumber n from the user where n represents the number of top n earners from the
EMPLOYEES table. For example, to view thetop five earners, enter 5.

Note: Use the DEFI NE command to provide the value for n. Pass the value to the PL/SQL
block through a iSQL *Plus substitution variable.

DELETE FROM t op_dogs;
DEFINE p_num =5

b. Inaloop usetheiSQL*Plus substitution parameter created in step 1 and gather the salaries of
the top n people from the EMPLOYEES table. There should be no duplication in the salaries. If
two employees earn the same salary, the salary should be picked up only once.

c. Storethesalariesinthe TOP_DOGS table.

d. Test avariety of special cases, such asn =0 or wheren is greater than the number of employees
in the EMPLOYEES table. Empty the TOP_ DOGS table after each test. The output shown
represents the five highest salaries in the EMPLOYEES table.

DECLARE
v_num NUVBER(3) : = &p_num
v_sal enpl oyees. sal ar y%I YPE;
CURSOR enp_cursor 1S
SELECT distinct salary
FROM enpl oyees
ORDER BY sal ary DESC,
BEGA N

OPEN enp_cursor;
FETCH enp_cursor INTO v_sal;
VWHI LE enp_cur sor “RONCOUNT <= v_num AND enp_cur sor %-OUND LOOP
| NSERT | NTO top_dogs (sal ary)
VALUES (v_sal);
FETCH enp_cursor |INTO v_sal;
END LOOP;
CLOSE enp_cursor;
COW T;
END;
/
SELECT * FROM t op_dogs:

Oracle9i: Program with PL/SQL A-21

Practice 6 Solutions (continued)
3. Createa PL/SQL block that does the following:

a. Usethe DEFI NE command to provide the department ID. Passthe valueto the PL/SQL block
through a iSQL*Plus substitution variable.

SET SERVEROUTPUT ON
SET ECHO OFF
DEFI NE p_dept _no = 10

b. InaPL/SQL block, retrieve the last name, salary and MANAGER | D of the employees working
in that department.

c. If thesaary of the employeeisless than 5000 and if the manager ID is either 101 or 124,
display the message<<l ast _name>> Due for a rai se. Otherwise, display a
message<<| ast _nane>> Not due for a raise.

Note: SET ECHO OFF to avoid displaying the PL/SQL code every time you execute the script
d. Test the PL/SQL block for the following cases:

Department ID M essage

10 Whal en Due for a raise

20 Hartstein Not Due for a raise
Fay Not Due for a raise

50 Wei ss Not Due for a raise

Fri pp Due for a raise

Kaufling Due for a raise
Vol | man Due for a raise
Mourgas Due for a raise

80 Russel Not Due for a raise

Partners Not Due for a raise
Errazuriz Not Due for a raise
Canbrault Not Due for a raise

Oracle9i: Program with PL/SQL A-22

Practice 6 Solutions (continued)
DECLARE

v_deptno NUMBER(4) := &p_dept no;
v_enane enpl oyees. | ast _nane%l YPE;

v_sal enpl oyees. sal ar yWd YPE;
v_manager enpl oyees. manager i d%d YPE;
CURSOR enp_cursor 1S

SELECT | ast _nane, sal ary, nanager i d
FROM enpl oyees
WHERE departnment _id = v_deptno;

BEG N

OPEN enp_cursor;
FETCH enp_cursor |INTO v_enane, v_sal,v_nanager;
VWHI LE enp_cursor %~OUND LOCP
IF v_sal < 5000 AND (v_manager = 101 OR v_manager = 124) THEN

DBVS QUTPUT. PUT _LINE (v_enane || ' Due for a raise');
ELSE

DBVS QUTPUT. PUT _LINE (v_enanme || ' Not Due for a raise');
END | F;

FETCH enp_cursor | NTO v_enane, v_sal,v_manager;

END LOOP;

CLOSE enp_cursor;

END;

/
SET SERVEROQUTPUT OFF

Oracle9i: Program with PL/SQL A-23

Practice 7 Solutions

1. Inaloop, useacursor to retrieve the department number and the department name from the
DEPARTMENTS table for those departments whose DEPARTIVENT _| Dis less than 100. Pass the
department number to ancther cursor to retrieve from the EMPLOYEES table the details of employee
last name, job, hire date, and salary of those employees whose EMPLOYEE | Disless than 120 and
who work in that department.

SET SERVEROUTPUT ON
DECLARE
CURSOR dept _cursor IS
SELECT departnent i d, depart nent _nane
FROM department s
WHERE departnent _id < 100
ORDER BY department id;
CURSCR enp_cursor(v_deptno NUMBER) | S
SELECT | ast_nane, job_id, hire_date, salary
FROM enpl oyees
WHERE departnent _id = v_deptno
AND enpl oyee _id < 120;
v_current _deptno departnents. departnent i d¥%YPE
v_current _dnane departnents. departnent nanme%l YPE
v_enane enpl oyees. | ast _name% YPE
v_job enpl oyees.job_i d%WYPE;
v_hi redat e enpl oyees. hire_dat e%d YPE
v_sal enpl oyees. sal ary%'YPE
v_line wvarchar2(100);
BEG N
v line :=

OPEN dept _cursor;
LOOP
FETCH dept _cursor I NTO v_current _deptno, v_current _dnane;
EXIT WHEN dept _cur sor ¥%NOTFOUND;

DBVS _OUTPUT. PUT_LI NE (' Departnment Number : ' ||
v_current _deptno || ' Departnent Nane : ' || v_current_dnane);

Oracle9i: Program with PL/SQL A-24

Practice 7 Solutions (continued)

DBMS_OUTPUT. PUT_LI NE(v_line);
I F enp_cursor % SOPEN THEN
CLCSE enp_cursor;
END | F;
OPEN enp_cursor (v_current _deptno);
LOOP

FETCH enp_cursor | NTO
v_enane,Vv_job,v_hiredate, v_sal;

EXIT WHEN enp_cur sor ¥%NOTFOUND,;

DBVS QUTPUT. PUT _LINE (v_enane || ' "l v_job ||
|| v_hiredate || ' " || wv_sal);
END LOOP;

I F enp_cursor % SOPEN THEN
CLCSE enp_cursor;
END | F;
DBVS_QUTPUT. PUT_LI NE(v_li ne);
END LOOP;
I F enp_cursor% SOPEN THEN
CLCSE enp_cursor;
END | F;
CLCSE dept _cursor;
END;
/
SET SERVEROQUTPUT OFF

Alter native Solution:

SET SERVEROUTPUT ON
DECLARE

CURSOR DEPT_CUR | S

SELECT DEPARTMENT | D DEPTNO, DEPARTMENT NANME DNANE

FROM DEPARTMENTS

WHERE DEPARTMENT | D < 100;

CURSOR EMP_CUR (P_DEPTNO NUVBER) IS

SELECT * FROM EMPLOYEES

WHERE DEPARTMENT | D = P_DEPTNO AND EMPLOYEE | D < 120;

Oracle9i: Program with PL/SQL A-25

Practice 7 Solutions (continued)

BEG N
FOR DEPT_REC | N DEPT_CUR LOOP
DBNMS_OUTPUT. PUT_LI NE
(' DEPARTMENT NUMBER ' || DEPT_REC. DEPTNO ||’
DEPARTMENT NAME: ' || DEPT_REC. DNAVE) ;
FOR EMP_REC | N EMP_CUR(DEPT_REC. DEPTNO) LOOP
DBNMS_OUTPUT. PUT_LI NE

(EMP_REC. LAST_NAME ||' '||EMP_REC.JOB ID||"
'| | EMP_REC. Hl RE_DATE| |' ' || EMP_REC. SALARY) ;
END LOOP;
DBVS_OUTPUT. PUT_LI NE(CHR(10)) ;
END LOOP;
END;

/

Oracle9i: Program with PL/SQL A-26

Practice 7 Solutions (continued)

2. Modify thecodeinsol 04_4. sgl toincorporate acursor using the FOR UPDATE and WHERE

CURRENT CF functionality in cursor processing.
a. Define the host variables.

SET VERI FY OFF
DEFI NE p_enpno = 104

b. Execute the modified PL/SQL block
DECLARE
v_enpno enp. enpl oyee i dWYPE : = &p_enpno;
v_asterisk enp. stars%YPE : = NULL;
CURSOR enp_cursor IS
SELECT enpl oyee_id, NVL(ROUND(sal ary/ 1000),
FROM enp
WHERE enpl oyee id = v_enpno
FOR UPDATE;
BEGA N
FOR enp_record IN enp_cursor LOCP
FORi IN 1. .enp _record.sal LOCP

v_asterisk := v_asterisk ||"*";
DBMS _OUTPUT. PUT_LI NE(v_ast eri sk);
END LOOP;
UPDATE enp

SET stars = v_asterisk
WHERE CURRENT OF enp_cursor;
v_asterisk := NULL;
END LOOP;
COW T,
END;
/
SET VERI FY ON

0) sal

c. Execute the following command to check if your PL/SQL block has worked successfully:

SELECT enpl oyee_id, sal ary, stars

FROM EMP
WHERE enpl oyee id IN (176,174, 104);

Oracle9i: Program with PL/SQL A-27

Practice 8 Solutions
1. WriteaPL/SQL block to select the name of the employee with a given salary value.
a. Usethe DEFI NE command to providethe salary.
SET VERI FY OFF
DEFI NE p_sal = 6000

b. Passthevaluetothe PL/SQL block through a iSQL*Plus substitution variable. If the salary
entered returns more than one row, handle the exception with an appropriate exception
handler and insert into the MESSACES table the message “ More than one employee with a
salary of <salary>.”

c. If the salary entered does not return any rows, handle the exception with an appropriate
exception handler and insert into the MESSAGES table the message “No employee with a
saary of <salary>."

d. If the salary entered returns only onerow, insert into the MESSAGES table the employee’'s
name and the salary amount.

e. Handle any other exception with an appropriate exception handler and insert into the
MESSACES table the message “ Some other error occurred.”

f. Testtheblock for avariety of test cases. Display the rows from the MESSAGES table to check
whether the PL/SQL block has executed successfully

DECLARE

v_enane enpl oyees. | ast _nane%lYPE;

v_sal enpl oyees. sal ary%YPE : = &p_sal;
BEGA N

SELECT | ast _nane

I NTO V_enane

FROM enpl oyees

WHERE salary = v_sal;
I NSERT | NTO nessages (results)
VALUES (v_enane || ' - " || v_sal);
EXCEPTI ON
WHEN no_data_found THEN
| NSERT | NTO nessages (results)
VALUES (' No enpl oyee with a salary of '|| TO CHAR(v_sal));
VWHEN t oo_nmany_rows THEN
I NSERT | NTO nessages (results)
VALUES (' More than one enployee with a salary of ||
TO CHAR(v_sal));
WHEN ot hers THEN
| NSERT | NTO nessages (results)
VALUES (' Sone other error occurred.');
END;
/
SET VERI FY ON

Oracle9i: Program with PL/SQL A-28

Practice 8 Solutions (continued)

2. Modify thecodein p3g3. sql toadd an exception handler.
a. Usethe DEFI NE command to provide the department 1D and department location. Pass the
values to the PL/SQL block through a iSQL*Plus substitution variables.

SET VERI FY OFF

VARI ABLE g_nessage VARCHAR2(100)
DEFI NE p_deptno = 200

DEFI NE p_l oc = 1400

b. Write an exception handler for the error to pass a message to the user that the specified
department does not exist. Use a bind variable to pass the message to the user.

c. Executethe PL/SQL block by entering a department that does not exist.

DECLARE

e _invalid dept EXCEPTI ON;

v_dept no depart ment s. departmnent i d%YPE : = &p_dept no;
BEG N

UPDATE depart nents
SET location_id = & | oc
WHERE departnent _id = &p_deptno;
COW T;
| F SQLYSNOTFOUND THEN
rai se e _invalid dept;
END | F;
EXCEPTI ON
WHEN e i nvalid _dept THEN

:g_nmessage := 'Departnent '|| TO CHAR(v_deptno) ||' is an
invalid departnent';

END;

/

SET VERI FY ON
PRI NT g _nessage

Oracle9i: Program with PL/SQL A-29

Practice 8 Solutions (continued)

3. WriteaPL/SQL block that prints the number of employees who earn plus or minus $100 of the salary
value set for an i SQL*Plus substitution variable. Use the DEFI NE command to provide the salary

value. Pass the value to the PL/SQL block through aiSQL*Plus substitution variable.

a. If thereis no employee within that salary range, print a message to the user indicating
that is the case. Use an exception for this case.

VARI ABLE g_nessage VARCHAR2(100)
SET VERI FY OFF
DEFI NE p_sal = 7000

b. If thereare one or more employees within that range, the message should indicate how many
employees arein that salary range.

¢. Handle any other exception with an appropriate exception handler. The message should indicate
that some other error occurred.

DECLARE
v_sal enpl oyees. sal ary%YPE : = &p_sal;
v_| ow sal enpl oyees. sal ary%YPE : = v_sal - 100;
v_hi gh_sal enpl oyees. sal ary%YPE : = v_sal + 100;
V_ho_enp NUMBER(7) ;

e _no_enp_returned EXCEPTI ON;
e_nore_than_one_enp EXCEPTI ON,
BEGA N
SELECT count (Il ast_nane)
INTO _no_enp
FROM enpl oyees
WHERE sal ary between v_|low sal and v_hi gh_sal;
IF v.noenp = 0 THEN
RAI SE e _no_enp_returned;
ELSIF v_no enp > 0 THEN
RAI SE e _nore_than_one_enp;
END | F;

Oracle9i: Program with PL/SQL A-30

Practice 8 Solutions (continued)

EXCEPTI ON
WHEN e no_enp_returned THEN
:g_nmessage := 'There is no enpl oyee salary between '||

TO CHAR(vV_ low sal) || " and '|]
TO CHAR(v_hi gh_sal);
WHEN e nore_t han_one_enp THEN
:g_message := 'There is/are '|| TO CHAR(v_no_emnmp) ||
' enployee(s) with a salary between '||
TO CHAR(v_ low sal) || ' and '|]
TO CHAR(v_hi gh_sal);
WHEN ot hers THEN
:g_nessage := 'Sonme other error occurred."';
END;
/
SET VERI FY ON
PRI NT g _nmessage

Oracle9i: Program with PL/SQL A-31

Practice 9 Solutions
Note: Save your subprogramsas. sql files, using the Save Scri pt button.
Remember to set the SERVEROUTPUT ONif you set it off previously.
1. Create and invoke the ADD _J OB procedure and consider the results.

a. Createaprocedurecalled ADD_JOBtoinsert anew job into the JOBS table. Providethe ID and
title of the job, using two parameters.

CREATE OR REPLACE PROCEDURE add_j ob
(p_jobid IN jobs.job_ id%YPE,
p_ jobtitle IN jobs.job title%YPE)
IS
BEG N
| NSERT INTO jobs (job_id, job title)
VALUES (p_jobid, p_jobtitle);
COW T;
END add_j ob;

b. Compilethe code, and invoke the procedure with | T_DBA asjob ID and Dat abase
Admi ni strat or asjobtitle Query the JOBS tableto view theresults.

IniSQL*Plus, load and run the script file created in question 1a above.

Procedure created.

EXECUTE add job ('IT_DBA , 'Database Admnistrator')
SELECT * FROM jobs WHERE job_id = "I T_DBA';

PLIZQL procedure successfully completed.

| JoB ID | JOB TITLE | MIN_SALARY | MAX SALARY
IT_DBA |Data Administrator | |

c. Invokeyour procedure again, passing ajob ID of ST _MANand ajob title of St ock Manager .
What happens and why?

EXECUTE add _job ('ST_MAN, 'Stock Manager')
BEGIN add job {'5T WA, "Stock Manager', END;

*

EEEOE at line 1:

OFL-000071: unique constrant (FLEOL JOE D PE) wolated

CEA-06512: at "PLEQL ADD _JOB", line &
OEA-06512: at line 1

Thereisaprimary key integrity constraint on the JOB_| D column.

Oracle9i: Program with PL/SQL A-32

Practice 9 Solutions (continued)
2. Create aprocedure called UPD_J OB to modify ajob in the JOBS table.

a. Createaprocedure called UPD_JCB to update the job title. Provide the job ID and a new title,
using two parameters. Include the necessary exception handling if no update occurs.

CREATE OR REPLACE PROCEDURE upd_j ob
(p_jobid IN jobs.job_id¥YPE,
p_jobtitle INjobs.job title%YPE)

IS

BEG N

UPDATE j obs

SET job title = p_jobtitle

WHERE job id = p_jobid;

| F SQLYNOTFOUND THEN

RAI SE_APPLI CATI ON_ERROR(-20202, ' No job updated.');
END | F;

END upd_j ob;

/

b. Compilethe code; invoke the procedure to change thejob title of thejob ID | T_DBA to Dat a
Adni ni strat or. Query the JOBS table to view the results. Also check the exception
handling by trying to update a job that does not exist (you can usejob ID | T_WEB and job title
Web Mast er).

IniSQL*Plus, load and run the script file created in the above question.

Frocedure created.

EXECUTE upd job ('IT_DBA, 'Data Adnministrator')
SELECT * FROM jobs WHERE job_id = 'IT_DBA ;
PLIZQL procedure successfully completed.

| JoB ID | JOB TITLE | MIN_SALARY | MAX SALARY
IT_DBA |Data Administrator | |

EXECUTE upd job ('"IT_WEB , 'Wb Mster')

BEGIM upd_job (1T _WWEB', "Web Master), EMD;

ERROR at line 1:

ORAZ20Z202: Mo job updated.

DRAOB512: at "PLSAL URPD_JOB", line 10
DRAOBS12: at line 1

Oracle9i: Program with PL/SQL A-33

Practice 9 Solutions (continued)
3. Create aprocedure called DEL _JOB to delete ajob from the J OBS table.

a. Createaprocedure called DEL_J OB to delete ajob from the J OBS table. Include the
necessary exception handling if no job is deleted.

CREATE OR REPLACE PROCEDURE del _job
(p_jobid IN jobs.job_ i d%YPE)
IS
BEG N
DELETE FROM j obs
WHERE job id = p_jobid;
| F SQLYNOTFOUND THEN

RAI SE_APPLI CATI ON_ERROR(- 20203, ' No j obs del eted.');
END | F;

END DEL_JOB;
/

b. Compile the code; invoke the procedure usingjob ID | T_DBA. Query the JOBS table to
view theresults.

IniSQL*Plus, load and run the script file created in the above question.

Procedure created.

EXECUTE del job (' 1T _DBA')
SELECT * FROM j obs WHERE job id = 'I T DBA ;
PLIZQL procedure successtully completed.

ho rovwes selected

Also, check the exception handling by trying to delete ajob that does not exist (usejob ID

| T_VEB). You should get the message you used in the exception-handling section of the procedure
as output.

EXECUTE del job (' 1T _WEB)
BEGIN del_job (TT_WEB". END:
b= o

EEEOE. at line 1:
OEA-20203: No jobs deleted.

OFA-06512: at "PLEQL DEL_JTOB" line 8
OFEA-06512: atline 1

Oracle9i: Program with PL/SQL A-34

Practice 9 Solutions (continued)

4. Createaprocedure called QUERY_EMP to query the EMPLOYEES table, retrieving the salary and job
ID for an employee when provided with the employee ID.

a. Create a procedure that returns a value from the SALARY and JOB_| D columns for a
specified employee ID.
Use host variables for the two OUT parameters salary and job ID.
CREATE OR REPLACE PROCEDURE query_enp
(p_enpid I N enployees. enpl oyee_ i d%I'YPE,
p_sal QUT enpl oyees. sal ar y%d'YPE,
p_job QUT enpl oyees. j ob_i dWYPE)
IS
BEG N
SELECT salary, job_id
| NTO p_sal, p_job
FROM enpl oyees
WHERE enpl oyee id = p_enpid,;
END query_enp;
/
b. Compile the code, invoke the procedure to display the salary and job 1D for employee ID 120.

IniSQL*Plus, load and run the script file created in the above question.

Procedure created.

VARl ABLE g _sal NUVBER

VARl ABLE g job VARCHAR2(15)

EXECUTE query_enp (120, :g_sal, :g_job)
PRI NT g sal

PRI NT g job

PLAZQL procedure successfully completed.

| G_SAL
| A000

| G_JOB
ST_MAN

Oracle9i: Program with PL/SQL A-35

Practice 9 Solutions (continued)
c. Invoke the procedure again, passing an EMPLOYEE | D of 300. What happens and why?
EXECUTE query_enp (300, :g sal, :g_job)

BEGIN query_emp (300, 2 sal, g qob), END;
*

EEEOE. at Iine 1:

DOEA-01403 no data found

COEA-06512: at "PLSQL QUERY EMP" line 7
DORA-06512: at line 1

Thereis no employee in the EMPLOYEES table with an EMPLOYEE | D of 300. The SELECT

statement retrieved no data from the database, resulting in afatal PL/SQL error,
NO_DATA FOUND.

Oracle9i: Program with PL/SQL A-36

Practice 10 Solutions
1. Createandinvokethe Q JOB function to return ajob title.
a. Createafunction called Q_JOB to return ajob titleto a host variable.
CREATE OR REPLACE FUNCTION g_j ob
(p_jobid IN jobs.job_ id%lYPE)
RETURN VARCHAR2
IS
v_jobtitle jobs.job titl e¥dYPE;
BEG N
SELECT job title
I NTO v_jobtitle
FROM j obs
WHERE job id = p_jobid;
RETURN (v_jobtitle);
END g_j ob;
/
b. Compilethe code; create a host variable G_TI TLE and invoke the function with job ID SA REP.

Query the host variable to view the result.
IniSQL*Plus, load and run the script file created in the above question.

Function created.

VARI ABLE g title VARCHAR2(30)
EXECUTE :g_title := q_job (' SA REP)
PRINT g title

PLIEQL procedure successfully completed.

| G_TITLE
|Sa|es Fepresentative

Oracle9i: Program with PL/SQL A-37

Practice 10 Solutions (continued)

2. Createafunction called ANNUAL CQOWVP to return the annual salary by accepting two parameters: an
employee’s monthly salary and commission. The function should address NULL values.

a. Create and invoke the function ANNUAL _COWVP, passing in values for monthly salary and
commission. Either or both values passed can be NULL, but the function should still return an
annual salary, whichis not NULL. The annual salary is defined by the basic formula:

(sal ary*12) + (conmi ssion_pct*sal ary*12)

CREATE OR REPLACE FUNCTI ON annual _conp
(p_sal I N enpl oyees. sal ar y%lYPE,
p_conm | N enpl oyees. conmi ssi on_pct %I'YPE)
RETURN NUVBER
IS
BEG N
RETURN (NVL(p_sal,0) * 12 + (NVL(p_comm 0)* p_sal * 12));
END annual _conp;
/
b. Usethefunctionina SELECT statement against the EMPLOYEES table for department 80.

SELECT enpl oyee_id, last_nane, annual conp(sal ary, conm ssion_pct)
"Annual Conpensation”

FROM enpl oyees
WHERE depart nent i d=80;

| EMPLOYEEID | LAST NAME | Annual Compensation

| 145 |Russell | 235200
| 146 |Partners | 210600
| 147 |Errazuriz | 187200
| 148 |Cambrault | 171600
| 10 | [Tlatlaw | 16400
|. o it || 1ayiar | | 23040
| 177 |Livingston | 120960
| 179 |Johnzon | 81840

34 rows selected.

Oracle9i: Program with PL/SQL A-38

Practice 10 Solutions (continued)

3. Createaprocedure, NEW EMP, to insert a new employeeinto the EMPLOYEES table. The procedure
should contain a call to the VALI D_DEPTI D function to check whether the department ID specified
for the new employee exists in the DEPARTIVENTS table.

a. Createafunction VALI D_DEPTI Dto validate a specified department ID. The function should
return a BOOLEAN value.

CREATE OR REPLACE FUNCTI ON valid_deptid
(p_deptid I N depart nents. depart ment i d%d'YPE)
RETURN BOOLEAN

IS

v_dumy VARCHAR2(1);
BEG N

SELECT 'Xx'

| NTO v_dumry
FROM departments
WHERE departnment _id = p_deptid;
RETURN (TRUE) ;
EXCEPTI ON
VWHEN NO_DATA FOUND THEN
RETURN (FALSE) ;
END val i d_depti d;

Oracle9i: Program with PL/SQL A-39

Practice 10 Solutions (continued)

b. Createthe procedure NEW EMP to add an employee to the EMPLOYEES table. A new row should
be added to EMPLOYEES tableif the function returns TRUE. If the function returns FAL SE, the
procedure should alert the user with an appropriate message.

Define DEFAULT values for most parameters. The default commissionis 0, the default salary is
1000, the default department ID is 30, the default job is SA REP and the default manager ID is
145. For the employee’' s ID, use the sequence EMPLOYEES _ SEQ. Provide the last name, first
name and e-mail address of the employee.
CREATE OR REPLACE PROCEDURE new_enp
(p_I nane enpl oyees. | ast _nane%l YPE,

p_fname enpl oyees. first_name%l YPE,

p_email enpl oyees. enni | YA YPE,

p_job enpl oyees. j ob_i d%YPE DEFAULT ' SA REFP',
p_ngr enpl oyees. manager _i d9%@YPE DEFAULT 145,
p_sal enpl oyees. sal ar y%YPE DEFAULT 1000,

p_comm enpl oyees. comi ssi on_pct %0 YPE DEFAULT O,
p_deptid enployees. departnent i dWYPE DEFAULT 30)
IS
BEG N
| F valid deptid(p_deptid) THEN

| NSERT | NTO enpl oyees(enpl oyee id, last_name, first_nane,
emai |, job_id, manager id, hire_date,
sal ary, comni ssion_pct, departnent _id)

VALUES (enpl oyees_seq. NEXTVAL, p_| nane, p_fnane, p_emil,
p_job, p_mgr, TRUNC (SYSDATE, 'DD), p_sal,
p_conm p_deptid);
ELSE
RAI SE_APPLI CATI ON_ERRCR (- 20204,
"Invalid departnent ID. Try again.');
END | F;
END new_enp;
/

Oracle9i: Program with PL/SQL A-40

Practice 10 Solutions (continued)

c. Test your NEW EMP procedure by adding a new employee named Jane Harris to department 15.
Allow all other parameters to default. What was the result?

EXECUTE new enp(p_I| name=>'Harris', p_fname=>'Jane',
p_email=>"JAHARRI S', p_deptid => 15)

BEGIN new _emp(p hame=>Harns', p_thame=>'Tane', p_emal=>'"TAHAEETS',
p_deptid==13), END,
= o

EEEOFE at line 1:

OFA-20204: Invalid depatttnent ID Try again.
CRA-06512: at "PLEQL.INEW _EMNEP", line 18
CEA-06512: at ine 1

d. Test your NEW EMP procedure by adding a new employee named Joe Harris to department 80.
Allow all other parameters to default. What was the result?

EXECUTE new enp(p_I| name=>' Harris', p_f name=>"' Joe',
p_emil =>"JOHARRI S', p_deptno => 80)

PLZQL procedure successfully completed.

Oracle9i: Program with PL/SQL A-41

Practice 11 Solutions

Suppose you have lost the code for the NEW EMP procedure and the VALI D_DEPTI D function that
you created in lesson 10. (If you did not complete the practicesin lesson 10, you can run the solution
scripts to create the procedure and function.)

Create an iSQL*Plus spool fileto query the appropriate data dictionary view to regenerate the code.

Hint:
SET -- options ON| OFF
SELECT -- statenment(s) to extract the code
SET -- reset options O\ OFF

To spool the output of thefiletoa. sql filefromiSQL*Plus, sdect the Save option for the
Qut put and execute the code.

SET ECHO OFF HEADI NG OFF FEEDBACK COFF VERI FY OFF
COLUWN LI NE NOPRI NT
SET PAGESI ZE 0

SELECT ' CREATE OR REPLACE ', 0O line

FROM DUAL

UNI ON

SELECT text, |ine

FROM USER_SOURCE

WHERE nanme IN (' NEWEWM , 'VALID DEPTNO)
ORDER BY | i ne;

SELECT ' /"
FROM DUAL,;

SET PAGESI ZE 24

COLUW LINE CLEAR
SET FEEDBACK ON VERI FY ON HEADI NG ON

Oracle9i: Program with PL/SQL A-42

Practice 12 Solutions

1. Create a package specification and body called JOB_PACK. (You can save the package body and
specification in two separate files.) This package contains your ADD J OB, UPD_JOB, and
DEL_J OB procedures, as well as your Q_JOB function.

Note: Usethe codein your previously saved script files when creating the package.
a Make all the constructs public.
Note: Consider whether you still need the stand-alone procedures and functions you just packaged.

CREATE OR REPLACE PACKAGE j ob_pack IS
PROCEDURE add_j ob
(p_jobid INjobs.job_ id¥YPE,
p_jobtitle INjobs.job title%YPE);
PROCEDURE upd_j ob
(p_jobid INjobs.job_ id¥YPE,
p_jobtitle INjobs.job title%YPE);
PROCEDURE del _j ob
(p_jobid IN jobs.job_ id¥WYPE);
FUNCTI ON g_j ob
(p_j obid IN jobs.job_ i dWYPE)
RETURN VARCHARZ;
END j ob_pack;
/

Paclkage created.

Oracle9i: Program with PL/SQL A-43

Practice 12 Solutions (continued)

CREATE OR REPLACE PACKAGE BODY job_pack IS
PROCEDURE add_j ob

(p_jobid I N jobs.job_id¥WYPE,
p_jobtitle IN jobs.job title%YPE)
IS
BEG N
| NSERT INTO jobs (job_id, job title)
VALUES (p_jobid, p_jobtitle);
END add_j ob;
PROCEDURE upd_j ob
(p_jobid I N jobs.job_id¥WYPE,
p_jobtitle IN jobs.job title%YPE)
IS
BEG N
UPDATE j obs
SET job title = p_jobtitle

WHERE job id = p_jobid;
| F SQLYNOTFOUND THEN
RAI SE_APPLI CATI ON_ERROR(-20202,"' No j ob updated.');
END | F;
END upd_j ob;

PROCEDURE del _j ob
(p_jobid IN jobs.job_ id¥YPE)
IS
BEG N
DELETE FROM j obs
WHERE job _id = p_j obid;
| F SQLYNOTFOUND THEN
RAI SE_APPLI CATI ON_ERROR (-20203,"' No job deleted."');
END | F;
END del _j ob;

FUNCTI ON g_j ob
(p_jobid IN jobs.job_ id%YPE)
RETURN VARCHAR2
IS
v_jobtitle jobs.job titl e%l YPE;
BEG N
SELECT job title
| NTO v_jobtitle
FROM j obs
WHERE job id = p_jobid;
RETURN (v_jobtitle);
END q_j ob;
END j ob_pack;
/

Package body created.

Oracle9i: Program with PL/SQL A-44

Practice 12 Solutions (continued)

b. Invoke your ADD JCB procedure by passing values | T_SYSAN and SYSTEMS ANALYST as
parameters.

EXECUTE j ob_pack. add_job(' I T_SYSAN , 'Systens Anal yst')
PLIZOL procedure successfully completed.
c. Query the JOBS tableto see theresult.

SELECT * FROM j obs
WHERE job_id = 'IT_SYSAN ;

FidoRiaD: [o8 TIEE | MIN_SALARY | MAX SALARY
IT_SYSAN |Systems Analyst | |

2. Create and invoke a package that contains private and public constructs.
a. Create a package specification and package body called EMP_PACK that contains your NEW EMP

procedure as a public construct, and your VALI D_DEPTI D function as a private construct. (Y ou
can save the specification and body into separate files.)

CREATE OR REPLACE PACKAGE emp_pack IS
PROCEDURE new_enp
(p_I name enpl oyees. | ast _nanme% YPE,
p_f name enpl oyees. first_name% YPE,

p_emi l enpl oyees. enai | Y YPE,

p_job enpl oyees. j ob_i dW@YPE DEFAULT ' SA REP',
p_ngr enpl oyees. manager i d%YPE DEFAULT 145,

p_sal enpl oyees. sal ar ydd@ YPE DEFAULT 1000,

p_conm enpl oyees. comm ssi on_pct %0 YPE DEFAULT O,
p_deptid enployees. departnent i d%YPE DEFAULT 80);
END enp_pack;
/

Paclkage created.

Oracle9i: Program with PL/SQL A-45

Practice 12 Solutions (continued)

CREATE OR REPLACE PACKAGE BCDY emp_pack 1S

FUNCTI ON val id_deptid

(p_deptid I N depart nents. depart ment i d%d'YPE)

RETURN BOOLEAN

IS

v_dumy VARCHAR2(1);

BEGA N

SELECT ' x'

I NTO v_dummy

FROM departnents

WHERE departnent _id = p_deptid,;

RETURN (TRUE) ;

EXCEPTI ON

WHEN NO_DATA FOUND THEN
RETURN(FALSE) ;

END val i d_depti d;

PROCEDURE new_enp

(p_I name enpl oyees. | ast _name%l YPE
p_fname enpl oyees. first_name% YPE

p_emai l enpl oyees. emai | YA YPE

p_job enpl oyees. j ob_i d%YPE DEFAULT ' SA REP',
p_ngr enpl oyees. manager _i d%dYPE DEFAULT 145,
p_sal enpl oyees. sal ar y%I YPE DEFAULT 1000,

p_conmm enpl oyees. comm ssi on_pct YdYPE DEFAULT O,
p_deptid enployees. departnent i d%dYPE DEFAULT 80)
IS
BEGA N
| F valid deptid(p_deptid) THEN
I NSERT | NTO enpl oyees (enployee_id, |ast_nane, first_nane,
email, job_id, nmanager _id, hire _date, salary, comm ssion_pct,
department i d)

VALUES (enpl oyees_seq. NEXTVAL, p_lnane, p_fnane, p_emil,
p_job, p_ngr, TRUNC (SYSDATE, 'DD), p_sal, p_conm
p_deptid);

ELSE
RAI SE_APPLI CATI ON_ERROR (- 20205,
"Invalid departnent nunber. Try again.');
END | F;
END new_enp;
END enp_pack;
/

Package body created.

Oracle9i: Program with PL/SQL A-46

Practice 12 Solutions (continued)

b. Invokethe NEW EMP procedure, using 15 as a department number. As the department ID 15
does not exist in the DEPARTMENTS table, you should get an error message as specified in the
exception handler of your procedure.

EXECUTE enp_pack. new enp(p_Il name=>' Harri s', p_f name=>' Jane',
p_emil =>"JAHARRI S', p_deptid => 15)

BEGIN emp pack new _empip Ihame=>Harns' p_thame=>'Tane', ¢ emal=="TAHARRIS',
p_deptid == 15, END;
A

EEEOE at line 1

DEA-20205: Invalid department munber. Try agatn.
OEA-06512: at "PLEQL EMP PACK" line 36
OEA-06512: at line 1

c. Invokethe NEW EMP procedure, using an exising department ID 80.

EXECUTE enp_pack. new enp(p_l name =>'Snith', p_fnane=>'David',
p_email =>' DASM TH , p_depti d=>80)

PLISQL procedure successfilly completed.

If you havetime:

3. a. Create a package called CHK _PACK that contains the procedures CHK _H REDATE and
CHK_DEPT_MGR. Make both constructs public. (You can save the specification and body into
separatefiles.)

The procedure CHK _HI REDATE checks whether an employe€'s hire date is within the following
range: [SYSDATE - 50 years, SYSDATE + 3 months].
Note:
» |f thedateisinvalid, you should raise an application error with an appropriate message
indicating why the date value is not acceptable.
» Make sure the time component in the date valueis ignored.
» Useaconstant to refer to the 50 years boundary.
* A null valuefor the hire date should be treated as an invalid hire date.
The procedure CHK _DEPT _MGR checks the department and manager combination for agiven
employee. The CHK_DEPT_MGR procedure accepts an employee ID and a manager ID. The
procedure checks that the manager and employee work in the same department. The procedure also
checks that the job title of the manager ID provided is MANAGER.
Note: If the department 1D and manager combination isinvalid, you should raise an application error
with an appropriate message.
CREATE OR REPLACE PACKAGE chk_pack 1S
PROCEDURE chk_hi redat e
(p_date in enployees. hire_dat e% ype);
PROCEDURE chk_dept ngr
(p_enpid i n enpl oyees. enpl oyee_i d% ype,
p_ngr i n enpl oyees. manager _i d% ype) ;
END chk_pack;
/

Paclkage created.
Oracle9i: Program with PL/SQL A-47

Practice 12 Solutions (continued)
CREATE OR REPLACE PACKAGE BODY chk_pack IS

PROCEDURE chk_hiredate(p_date in enployees. hire_dat e%lYPE)

IS
v_low date := ADD MONTHS (SYSDATE, - (50 * 12));
v_high date : = ADD MONTHS (SYSDATE, 3);

BEG N

| F TRUNC(p_date) NOT BETWEEN v_| ow AND v_hi gh
OR p_date |'S NULL THEN
RAI SE_APPLI CATI ON_ERROR(- 20200, ' Not a valid hiredate');
END | F;
END chk_hi redat e;

PROCEDURE chk _dept _nmgr(p_enpid i n enpl oyees. enpl oyee_i d%I'YPE,
p_ngr i n enpl oyees. manager _i d%l'YPE)
IS
v_enpnr enpl oyees. enpl oyee_i d%YPE;
v_deptid enpl oyees. departnent i dWdYPE;
BEG N
BEG N
SELECT departnent _id
I NTO v_deptid
FROM enpl oyees
WHERE enpl oyee id = p_enpi d;
EXCEPTI ON
VWHEN NO_DATA FQOUND
THEN RAI SE_APPLI CATI ON_ERROR(-20000, 'Not a valid enp id');

END;
BEG N
SELECT enpl oyee i d /*check val id conbination
dept no/ ngr for given enpl oyee */
I NTO v_enpnr

FROM enpl oyees
WHERE departnent _id
AND enpl oyee id = p
AND job_id like "9

= v_deptid
_ngr
N ;
EXCEPTI ON
VWHEN NO_DATA FQOUND
THEN RAI SE_APPLI CATI ON_ERROR (- 20000,
"Not a valid nmanager for this departnent');
END;
END chk_dept ngr;

END chk_pack;
/

Package body created.

Oracle9i: Program with PL/SQL A-48

Practice 12 Solutions (continued)
b. Test the CHK _HI REDATE procedure with the following command:
EXECUTE chk_pack. chk_hiredat e(' 01- JAN-47")
What happens, and why?

BEGIN chk pack chl hiredate('01-TAN-47"; ENL,
E o

EEEOE atline 1:

DEA-20200: Mot a valid hure date
DEA-06512: at "PLEQL CHE PACE" line
ORA-06512: at line 1

c. Test the CHK HI REDATE procedure with the following command:
EXECUTE chk_pack. chk_hi r edat e(NULL)

What happens, and why?

BEGIN chk pack chk hiredate(MTULL)Y;, END,
e

EEECE atline 1:

DEA-20200: Mot a valid luredate
DEA-06512: at "PLIQL CHE PACE" line &
OEA-06512: atline 1

d. Test the CHK _DEPT_MGR procedure with the following command:
EXECUTE chk_pack. chk_dept ngr (117, 100)
What happens, and why?

BEGIM chk pack chk dept_mgr(117,100%;, END;

*

EEFR.COE. at line 1:

OEA-20000: Mot a valid manager for this department
CEA-06512; at "PLEQL CHE _PACE", line 37
COEA-06512: at line 1

Oracle9i: Program with PL/SQL A-49

Practice 13 Solutions
1. Createapackage called OVER_LQAD. Create two functions in this package; name each function
PRI NT_I T. The function accepts a date or a character string and prints a date or a number, depending
on how the function is invoked.
Note:

e To print the date value, use DD- MON- YY asthe input format, and FmMonth,dd yyyy asthe
output format. Make sure you handle invalid input.

e Toprint out the number, use 999,999.00 as the input format.

The package specification:
CREATE OR REPLACE PACKAGE over_load IS
FUNCTION print _it(p_arg IN DATE)
RETURN VARCHARZ;
FUNCTION print _it(p_arg IN VARCHAR2)
RETURN NUMBER,
END over | oad;
/

Package created.

The package body:
CREATE OR REPLACE PACKAGE BODY over _| oad
IS
FUNCTION print _it(p_arg |IN DATE)
RETURN VARCHAR2
IS
BEG N
RETURN to_char(p_arg, 'FnMonth, dd yyyy');
END print _it;

FUNCTION print _it(p_arg IN VARCHAR2)
RETURN NUVBER
IS
BEG N
RETURN TO NUVMBER(p_arg, '999,999.00");
-- or use the NLS characters for grands and deci nmal s
-- RETURN TO _NUMBER(p_arg, '999(3999D00');
END print _it;
END over | oad;
/

Package body created.

Oracle9i: Program with PL/SQL A-50

Practice 13 Solutions (continued)
a. Test thefirst version of PRI NT_| T with the following set of commands:
VARI ABLE di spl ay_dat e VARCHAR2(20)
EXECUTE : display _date := over l|oad. print_it(TO DATE(' 08- MAR-01'))
PRI NT di spl ay_date

PLAEOL procedure successfully completed.

| DISPLAY DATE
(March 8 2001

b. Test the second version of PRI NT_| T with the following set of commands:
VARI ABLE g _enp_sal nunber
EXECUTE : g _enp_sal := over load.print_it('33,600")
PRI NT g enp_sal

PLIZQL procedure successfully completed.

| G_EMP_SAL
| 33600

2. Create anew package, called CHECK PACK, to implement a new business rule.

a. Create a procedure called CHK_DEPT_J OB to verify whether a given combination of department

ID and job isavalid one. In this case valid means that it must be a combination that currently
exists in the EMPLOYEES table.

Note:
» UseaPL/SQL tableto storethe valid department and job combination.
» The PL/SQL table needs to be populated only once.
» Raise an application error with an appropriate message if the combination is not valid.

CREATE OR REPLACE PACKAGE check pack IS
PROCEDURE chk_dept j ob
(p_deptid I N enpl oyees. depart ment _i d%I'YPE,
p_job I N enpl oyees. j ob_i dWYPE) ;
END check_pack;
/

Paclkage created.

Oracle9i: Program with PL/SQL A-51

Practice 13 Solutions (continued)
CREATE OR REPLACE PACKAGE BODY check_pack
IS
i NUMBER : = 0;
CURSOR enmp_cur IS
SELECT departnent _id, job_id
FROM enpl oyees;
TYPE enp_table type | S TABLE OF enp_cur “RONMYPE
| NDEX BY BI NARY_| NTECER,
deptid _job enp_table type;

PROCEDURE chk_dept j ob
(p_deptid in enployees. depart ment i d%l'YPE,
p_job i n enpl oyees. job_i d%YPE)
IS
BEG N
FOR k IN deptid job. FIRST .. deptid_job. LAST LOOP
IF p_deptid = deptid_job(k).department _id
AND p job = deptid_job(k).job id THEN
RETURN;
END | F;
END LOOP;
RAI SE_APPLI CATI ON_ERROR
(-20500, "Not a valid job for this dept');
END chk_dept j ob;

BEG N -- one-time-only-procedure
FOR enp_rec I N enp_cur LOOP
deptid job(i) := enp_rec;
i =0 + 1;
END LOOP;
END check_pack;
/

Package body created.

Oracle9i: Program with PL/SQL A-52

Practice 13 Solutions (continued)

b.

Test your CHK _DEPT _J OB package procedure by executing the following command:
EXECUTE check _pack. chk _dept job(50,' ST _CLERK')
What happens?

PLIZOL procedure successfilly completed.

Test your CHK _DEPT _J OB package procedure by executing the following command:
EXECUTE check _pack. chk_dept job(20,' ST _CLERK')

What happens, and why?

BEGIN check pack chi dept 0b(20,'5T CLEEE", END,

*

EEEOE. at line 1

OEA-20500: Not a walid job for this dept
OEA-06512: at "PLEQL CHECE _PACK", line 21
COEA-06512: at line 1

Oracle9i: Program with PL/SQL A-53

Practice 14 Solutions

la. Create a procedure DROP_TABLE that drops the table specified in the input parameter. Use
the procedures and functions from the supplied DBMS _SQL package.

CREATE OR REPLACE PROCEDURE drop_tabl e
(p_tabl e_name I N VARCHAR2)
IS
dyn_cur NUMBER;
dyn_err VARCHAR2(255);
BEG N
dyn_cur := DBM5_ SQL. OPEN CURSOR;
DBMS_SQL. PARSE(dyn_cur, 'DROP TABLE ' ||
p_table nanme, DBMS _SQ.. NATI VE);
DBMS SQL. CLOSE CURSCOR(dyn_cur);
EXCEPTI ON
WHEN OTHERS THEN dyn_err : = SQ.ERRM
DBMS SQ.. CLOSE _CURSCR(dyn_cur);
RAI SE_APPL| CATI ON_ERROR(- 20600, dyn_err);
END drop_tabl e;
/

FProcedure created.

b. To test the DROP_TABLE procedure, first create a new table called EMP_DUP as a copy of
the EMPLOYEES table.

CREATE TABLE enp_dup AS
SELECT * FROM enpl oyees;

Table created.

c. Executethe DROP_TABLE procedureto drop the EMP_DUP table.
EXECUTE drop_tabl e(' enp_dup')
SELECT * FROM enp_dup;

PLAZQL procedure successfully completed.
SELECT * FEOM emp_dup
e
EEEOE atline 1:
DEA-00942: table or wiew does not exst

Oracle9i: Program with PL/SQL A-54

Practice 14 Solutions (continued)

2a. Create another procedure called DROP_TABLE2 that drops the table specified in the input
parameter. Usethe EXECUTE | MVEDI ATE statement.

CREATE PROCEDURE DROP_TABLE2
(p_table name |IN VARCHAR2)
IS
BEG N
EXECUTE | MVEDI ATE ' DROP TABLE ' || p_tabl e_nane®;
END;
/

FProcedure created.

b. Repeat thetest outlined in steps 1b and 1c.
CREATE TABLE enp_dup AS
SELECT * FROM enpl oyees;

Table created.

EXECUTE drop_tabl e2("' enp_dup')
SELECT * FROM enp_dup;

PLAZQL procedure successfully completed.
SELECT * FEOM emp_dup
e
EEEOE atline 1:
DEA-00942: table or wiew does not exst

Oracle9i: Program with PL/SQL A-55

Practice 14 Solutions (continued)

3a. Create a procedure called ANALYZE COBJECT that analyzes the given object that you specified in
the input parameters. Use the DBMS_DDL package, and use the COVMPUTE method.

CREATE OR REPLACE procedure anal yze obj ect
(p_obj type IN VARCHARZ,
p_obj _nane I N VARCHAR2)

IS
BEG N
DBMVS_DDL. ANALYZE OBJECT(
p_obj _type,
USER,
UPPER(p_obj nane),
" COWPUTE') ;
END;

/

FProcedure created.

b. Test the procedure using the table EMPLOYEES.

Confirm that the ANALYZE_OBJECT procedure has run by querying the LAST _ANALYZED
columninthe USER_TABLES data dictionary view.

EXECUTE ANALYZE_OBJECT (' TABLE' , ' EMPLOYEES)
SELECT LAST_ANALYZED FROM USER _TABLES
VWHERE TABLE_NAME = ' EMPLOYEES'

PLASCL procedure successfully completed.

| LAST ANAL
27-5EP-01

Oracle9i: Program with PL/SQL A-56

Practice 14 Solutions (continued)
If you havetime:

4a. Schedule ANALYZE CBJECT by using DBMS _JOB. Analyzethe DEPARTMENTS table, and
schedule the job to run in five minutes time from now. (To start thejob in five minutes from
now, set the parameter NEXT _DATE = 5/(24*60) = 1/288.)

VARI ABLE j obno NUMBER

EXECUTE DBMS_JOB. SUBM T(: j obno,
"ANALYZE_OBJECT (''TABLE ', ''DEPARTMENTS ');',
SYSDATE + 1/ 288)
PRI NT j obno

PLAEQL procedure successfully completed.

| JOBNO
| 21

b. Confirmthat the job has been scheduled by using USER_JOBS.

SELECT JOB, NEXT_DATE, NEXT_SEC, WHAT FROM USER_JCBS;

|JOB |NEXT DATE |NEXT SEC | WHAT
| 1 [28-3EPD1 [DGOD:00 |OWER_PACK ADD_DEPT{EDUCATION' 2710);
| 21 27-SEPO1 [18:11:33 | ANALYZE_OBJECT (TABLE' DEPARTMENTST;

Oracle9i: Program with PL/SQL A-57

Practice 14 Solutions (continued)

5. Create aprocedure called CROSS AVGSAL that generates atext file report of employees who have

exceeded the average salary of their department. The partial code is provided for you in thefile
| abl4 5.sql.

a. Your program should accept two parameters. Thefirst parameter identifies the output directory. The
second parameter identifies the text file name to which your procedure writes.

CREATE OR REPLACE PRCCEDURE cross_avgsal
(p_filedir INVARCHAR2, p_filenanel | N VARCHAR2)
IS
v_fh_1 UTL_FILE. FI LE_TYPE;
CURSOR cross_avg | S
SELECT | ast_nane, departnent _id, salary
FROM enpl oyees out er
WHERE sal ary > (SELECT AVGE sal ary)
FROM enpl oyees inner
GROUP BY out er. departnent _id)
ORDER BY departnent i d;
BEG N
v fh 1 := UTL_FILE FOPEN(p _filedir, p_filenamel, 'wW);
UTL_FILE. PUTF(v_fh_1,"' Enpl oyees with nore than average salary:\n');
UTL_FI LE. PUTF(v_fh_1, 'REPORT GENERATED ON %s\n\n', SYSDATE);
FOR v_enmp_info IN cross_avg

LOOP
UTL_FI LE. PUTF(v_fh_1, '% % \n',
RPAD(v_enp_info.last_name, 30, ' '),
LPAD(TO CHAR(v_enp_i nfo.salary, '$99,999.00"), 12, ' '));
END LOOP;

UTL_FI LE. NEW LI NE(v_fh_1);
UTL_FILE. PUT_LINE(v_fh_1, "*** END OF REPORT ***');
UTL_FI LE. FCLOSE(v_fh_1);

END cross_avgsal ;

/

Oracle9i: Program with PL/SQL A-58

Practice 14 Solutions (continued)

b. Your instructor will inform you of the directory location. When you invoke the program,
name the second parameter sal _r pt xx. t xt wherexx stands for your user number,

such as 01, 15, and so on.

EXECUTE cross_avgsal (' SHOVE/ Ut 1 file',

"sal _rptxx.txt')
(Replace $HOVE with the path to the directory Ut | f i | e and xx with your user number)

¢. Add an exception handling section to handle errors that may be encountered from using

the UTL_FI LE package.
Sample output from this file follows:

EMPLOYEES OVER THE AVERACE SALARY OF THEI R DEPARTMENT:

REPORT GENERATED ON 26- FEB-01

Hartstein 20
Raphael y 30
Mar vi s 40
Wei ss 50

x END OF REPORT ***

Note: The solution apperson the next page.

$13, 000. 00
$11, 000. 00
$6, 500. 00
$8, 000. 00

Oracle9i: Program with PL/SQL A-59

Practice 14 Solutions (continued)

CREATE OR REPLACE PRCCEDURE cross_avgsal
(p_filedir IN VARCHAR2, p_filenanmel | N VARCHAR2)
IS
v_fh_1 UTL_FI LE. FI LE_TYPE;
CURSOR cross_avg IS
SELECT | ast_nane, departnent _id, salary
FROM enpl oyees out er
WHERE sal ary > (SELECT AV sal ary)
FROM enpl oyees i nner
GRQUP BY out er.department _id)
ORDER BY departnent id;
BEG N
v fh 1 := UL _FILE FOPEN(p _filedir, p_filenamel, 'wW);
UTL_FILE. PUTF(v_fh_1,"' Enpl oyees with nore than average salary:\n');
UTL_FI LE. PUTF(v_fh_1, ' REPORT GENERATED ON 9%\ n\n', SYSDATE);
FOR v_enp_info IN cross_avg

LOOP
UTL_FI LE. PUTF(v_fh_1, '% % \n',
RPAD(v_enp_info.last_nanme, 30, ' '),
LPAD(TO CHAR(v_enp_info.salary, '$99,999.00'), 12, ' "));
END LOOP;

UTL_FI LE. NEW LI NE(v_fh_1);
UTL_FILE. PUT_LINE(v_fh_1, '*** END OF REPORT ***');
UTL_FI LE. FCLOSE(v_fh_1);

EXCEPTI ON
WHEN UTL_FI LE. | NVALI D_FI LEHANDLE THEN
RAI SE_APPLI CATI ON_ERROR (-20001, 'Invalid File.");
UTL_FI LE. FCLOSE_ALL;
VWHEN UTL_FI LE. WRI TE_ERROR THEN
RAI SE_APPLI CATI ON_ERRCOR (-20002,
"Unable to wite to file');
UTL_FI LE. FCLOSE_ALL;
END cross_avgsal ;
/

Oracle9i: Program with PL/SQL A-60

Practice 15 Solutions

1

2.

Create atable called PERSONNEL by executing the script filel ab15_ 1. sql . Thetable contains the
following attributes and data types:

Column Name | Data Type Length
| D NUMBER 6

[ast _nane VARCHAR2 35
revi ew CLOB N/A

pi cture BLOB N/A

CREATE TABLE personnel
(id NUVMBER(6) constraint personnel id pk PRI MARY KEY,
| ast _nane VARCHARZ2(35),
revi ew CLCB,
pi cture BLOB);

Table created.

Insert two rows into the PERSONNEL table, one each for employees 2034 and 2035. Use the empty
function for the CLOB, and provide NULL asthe value for the BLOB.

| NSERT | NTO personnel

VALUES(2034, '"Allen', EMPTY_CLOB(), NULL);
1 row created.
| NSERT | NTO personnel

VALUES(2035, 'Bond', EMPTY_CLOB(), NULL);
1 row created.

Executethescript | ab15_ 3. sql . The script creates atable named REVI EW TABLE. Thistable
contains annual review information for each employee. The script also contains two statements to insert
review details for two employees.

CREATE TABLE review table
(empl oyee_i d nunber,
ann_revi ew VARCHAR2(2000));

| NSERT | NTO revi ew tabl e

VALUES(2034, ' Very good performance this year. Recommended to
i ncrease sal ary by $500');

| NSERT | NTO revi ew tabl e

VALUES(2035, ' Excel l ent performance this year. Recommended to
i ncrease salary by $1000');

COW T,

Oracle9i: Program with PL/SQL A-61

Practice 15 Solutions (continued)
4. Update the PERSONNEL table.
a. Populate the CLOB for thefirst row, using the following query in a SQL UPDATE statement:
SELECT ann_revi ew
FROM review table
WHERE enpl oyee id = 2034,
UPDATE per sonnel
SET review = (SELECT ann_revi ew
FROM review table
WHERE enpl oyee id = 2034)
WHERE | ast_nanme = 'Allen';

1 row updated.

b. Populate the CLOB for the second row, using PL/SQL and the DBMS_ L OB package.

Use the following SELECT statement to provide a value:
SELECT ann_revi ew
FROM review table
WHERE enpl oyee id = 2035;

DECLARE
| obl oc CLOB;
t ext VARCHAR2(2000);
anount NUMBER ;
of fset | NTEGER,
BEG N
SELECT ann_revi ew | NTO t ext
FROM revi ew t abl e
WHERE enpl oyee id =2035;
SELECT review I NTO | obl oc
FROM per sonnel
WHERE | ast _nanme = 'Bond' FOR UPDATE;

of fset := 1;

amount : = |l ength(text);

DBMS LOB.WRI TE (| obl oc, anount, offset, text);
END;

/
PLISQL procedure successfully completed.

Oracle9i: Program with PL/SQL A-62

Practice 15 Solutions (continued)
If you havetime...

5. Create aprocedure that adds a locator to abinary fileinto the PI CTURE column of the COUNTRI ES
table. The binary fileis a picture of the country. The image files are named after the country I1Ds. You
need to load an image file locator into all rows in Europeregion (REA ON | D=1) inthe
COUNTRI ES table. The DI RECTORY object name that stores a pointer to the location of the binary
filesis called COUNTRY_PI C. This object is already created for you.

a. Use the command below to add the image column to the COUNTRI ES table. (or run
| abl5 5 add. sql)

ALTER TABLE countries ADD (picture BFILE);

b. Create a PL/SQL procedurecalled| oad_country_i nage that reads alocator into your

picture column. Have the program test to see if the file exists, using the function
DBVS_LOB. FI LEEXI STS. If thefileis not existing, your procedure should display a

message that the file can not be opened. Have your program report information about the load
to the screen.

Note: The solution appears on the next page.

c. Invoke the procedure by passing the name of the directory object COUNTRY _PI Casthe
parameter. Note that you should pass the directory object in single quotation marks.

EXECUTE | oad_country_i nage(' COUNTRY_PI C)

LOADING LOCATORS TO IMAGES.
LOADED LOCATOE TO FILE: BE tif SIZE: 7444
LOADED LOCATOE TO FILE: CH.uf 2IZE: 7444
LOADED LOCATOE TO FILE: DE uf SIZE: 7444
LOADED LOCATOE TO FILE: DE tf SIZE: 7444
LOADED LOCATOE TO FILE: FE of SIZE: 7444
LOADED LOCATOE TO FILE: IT of SIZE: 7444
LOADED LOCATOR TO FILE: WL tif SIZE: 7444
LOADED LOCATOE TO FILE: UE uf SIZE: 7444
TOTAL FILE: TPDATELD: 8

PLIZQL procedure successfully completed.

Oracle9i: Program with PL/SQL A-63

Practice 15 Solutions (continued)

CREATE OR REPLACE PROCEDURE | oad_country_i mage
(p_file_loc IN VARCHAR?)

IS
v_file BFI LE;
v_filenane VARCHAR2(40) ;

v_record_nunmber NUMBER,
v file_ exists BOOLEAN,;
CURSCR country _pic_cursor 1IS

SELECT country_id
FROM countri es
WHERE region_id =1
FOR UPDATE;

BEGA N
DBMS_QUTPUT. PUT_LI NE(' LOADI NG LOCATORS TO | MAGES. . .");
FOR country _record IN country_pic_cursor

LOOP
v_filename := country record.country id || '.tif";
v file := bfilenane(p_file loc, v _filenane);

v file exists := (DBMS LOB. FI LEEXI STS(v_file) = 1);
IF v file_exists THEN
DBMS_LOB. FI LEOPEN(v_fil e);
UPDATE countri es
SET picture = bfilenanme(p_file_ loc, v_filenane)
WHERE CURRENT OF country pic_cursor;

DBVS_OUTPUT. PUT_LI NE(' LOADED LOCATOR TO FILE: '||v_fil ename
|| '~ SIZE: ' || DBMS_LOB.GETLENGTH(V file));

DBVS _LOB. FI LECLCSE(v_file);
v_record_nunber := country_pic_cursor “RONCOUNT,;
ELSE
DBVS_OUTPUT. PUT_LI NE(' Can not open the file '"||v_filenane);
END | F;
END LOOP;
DBMS_QUTPUT. PUT_LI NE(' TOTAL FI LES UPDATED: '||v_record_nunber);
EXCEPTI ON
WHEN OTHERS THEN
DBVMS_LOB. FI LECLOSE(v_file);
DBVS _OUTPUT. PUT_LI NE(' Program Error Cccurred: '
|| to_char(SQLCCDE) || SQLERRM ;
END | oad_country i mage;
/

Oracle9i: Program with PL/SQL A-64

Practice 16 Solutions

1. Changesto data are allowed on tables only during normal office hours of 8:45 am. until 5:30 p.m.,
Monday through Friday.

Create a tored procedure called SECURE DML that prevents the DML statement from executing outside

of normal office hours, returning the message, “Y ou may make changes only during normal office
hours.”

CREATE OR REPLACE PROCEDURE secure_dni
IS
BEG N
| F TO CHAR (SYSDATE, 'HH24:M') NOT BETWEEN ' 08:45" AND ' 17: 30
OR TO CHAR (SYSDATE, 'DY") IN ('SAT', 'SUN)
THEN RAI SE_APPLI CATI ON_ERRCR (-20205,
"You nmay nake changes only during normal office hours');
END | F;
END secure_dm ;
/
FProcedure created.
2. a Createastatement trigger on the JOBS table that calls the above procedure.
CREATE OR REPLACE TRI GGER secure_prod
BEFORE | NSERT OR UPDATE OR DELETE ON j obs
BEG N
secure_dm ;
END secure_prod;

/
Trigger created.

b. Test the procedure by temporarily modifying the hours in the procedure and attempting to insert a
new record into the JOBS table. (Example: replace 08:45 with 16:45)

After testing, reset the procedure hours as specified in question 1 and recreate the procedure asin
guestion 1 above.

| NSERT I NTO jobs (job id, job title)
VALUES (' HR_MAN , 'Human Resources Manager');

INSERT INTO jobs (job_id, job_title)
S

EEEOE at line 1:

OEA-20205: You may make changes only dunng normal office hours
OFA-06512: at "PLEQL SECTURE DML, line &

OFEA-06512: at "PLEQL SECTIEE_FEOD" line 2

OEA-D4088: error dunng execution of tngeer TLEOQL SECTUEE PEODY

Oracle9i: Program with PL/SQL A-65

Practice 16 Solutions (continued)

3. Employees should receive an automatic increasein salary if the minimum salary for ajob isincreased.
Implement this requirement through a trigger on the JOBS table.
a. Create a stored procedure named UPD_EMP_ SAL to update the salary amount. This procedure

accepts two parameters: thejob 1D for which salary has to be updated, and the new minimum
salary for thisjob ID. This procedureis executed from the trigger on the JOBS table.

CREATE OR REPLACE PROCEDURE upd_enp_sal
(p_jobid IN enployees.job_id¥WdYPE,
p_minsal | N enployees. sal ar y%d YPE)
IS
BEG N
UPDATE enpl oyees
SET salary = p_ninsal
VWHERE job_id = p_jobid
AND SALARY < p_m nsal;
END upd_enp_sal ;
/
FProcedure created.

b. Createarow trigger named UPDATE EMP_SALARY on the JOBS table that invokes the
procedure UPD_EMP_SAL when the minimum salary in the JOBS table is updated for a
specified job ID.

CREATE OR REPLACE TRI GGER update_enp_sal ary
AFTER UPDATE OF nin_salary ON jobs

FOR EACH ROW
BEG N

upd_enp_sal (: NEWjob_id, :NEWmMmn_salary);
END;
/

Trigger created.

c. Query the EMPLOYEES table to see the current salary for employees who are programmers.
SELECT | ast_nane, first_name, salary
FROM enpl oyees

WHERE job_id = 'I T_PROG ;

| LAST NAME | FIRST_NAME | SALARY
\Austin Diawid | 5260
Hunold lesander | 3000
|Ernst |Eiruu:e | BO00
Pataballa all | 5280
|Lurentz |Diana | 4620

Oracle9i: Program with PL/SQL A-66

Practice 16 Solutions (continued)
d. Increase the minimum salary for the programmer job from 4,000 to 5,000.

UPDATE j obs
SET mi n_salary = 5000
WHERE job_id = "I T_PROG ;

e. Employee Lorentz (employee ID 107) had a salary of less than 4,500. Verify that her salary has
been increased to the new minimum of 5,000.
SELECT | ast_nane, first_name, salary
FROM enpl oyees
WHERE enpl oyee id = 107;

| LAST_NAME | FIRST_NAME | SALARY
|L|:|rentz |Diana | s000

Oracle9i: Program with PL/SQL A-67

Practice 17 Solutions
A number of business rules that apply to the EMPLOYEES and DEPARTMENTS tables are listed below.

Decide how to implement each of these business rules, by means of declarative constraints or by using triggers.
Which constraints or triggers are needed and are there any problems to be expected?

Implement the business rules by defining the triggers or constraints that you decided to create.

A partial packageisprovidedinfilel ab17_1. sql towhich you should add any necessary procedures or
functions that are to be called from triggers that you may create for the following rules.

(Thetriggers should execute procedures or functions that you have defined in the package.)

Thefollowing codeisfromthel ab17_1. sql file
REM Package specification with sanple procedure specifications
CREATE OR REPLACE PACKAGE ngr_constrai nts_pkg
IS
PROCEDURE check_pr esi dent;
PROCEDURE check_nyr;

PROCEDURE new | ocation(p_deptid IN departnents. departnent i d%YPE) ;
new _ngr enpl oyees. manager i d%YPE : = NULL;

END ngr _constraints_pkg;
/

REM Package Body - fill in the code for the procedures
CREATE OR REPLACE PACKAGE BODY ngr_constraints_pkg
IS

PROCEDURE check president IS

END check_president;
PROCEDURE check ngr IS

END check_nyr;
PROCEDURE new | ocation(p_deptid IN departnents. depart nent i d%'YPE)
IS

END new | ocati on;

END ngr _constraints_pkg;
/

Oracle9i: Program with PL/SQL A-68

Practice 17 Solutions (continued)
Thefollowing code is the complete solution for the package specification.
CREATE OR REPLACE PACKAGE ngr_constrai nts_pkg
IS
PROCEDURE check presi dent;
PROCEDURE check ngr;
PROCEDURE new | ocati on
(p_deptid IN departnents.departnent i d¥YPE);
new _ngr enpl oyees. nanager i d%YPE : = NULL;
END ngr _constraints_pkg;

Oracle9i: Program with PL/SQL A-69

Practice 17 Solutions (continued)

Thefollowing code is the solution for the package body.
CREATE OR REPLACE PACKAGE BODY ngr _constraints_pkg

IS
PROCEDURE check_presi dent
IS
v_dumy CHAR(1);
BEG N
SELECT * x’
I NTO v_dummy
FROM enpl oyees
WHERE job_id = 'AD PRES ;
EXCEPTI ON
VWHEN NO _DATA FOUND THEN
NULL;

VWHEN TOO_MANY_ROWS THEN
RAI SE_APPLI CATI ON_ERROR(- 20001, ' President title
al ready exists');
END check_presi dent;
PROCEDURE check_ nygr

IS

count _enps NUMBER : = O;
BEG N

IF new ngr IS NOT NULL

THEN

-- count the nunber of people
-- working for the ngr
SELECT count (*)
I NTO count_enps
FROM enpl oyees
WHERE nmmnager _id = new _nyr;
END | F;
-- if there are now nore than 15,
-- raise an error
IF count_enps > 15
THEN RAI SE_APPLI CATI ON_ERROR (- 20202,
'Max nunber of enps exceeded for '|| TO CHAR(new ngr));
END | F;
END check_nyr;

Oracle9i: Program with PL/SQL A-70

Practice 17 Solutions (continued)
PROCEDURE new | ocati on
(p_deptid IN departnents. departnment i d%YPE)
IS
v_sal enpl oyees. sal ar yWd YPE;
BEG N
UPDATE enpl oyees
SET salary = salary*1. 02
WHERE departnment _id = p_deptid;
END new | ocati on;
END ngr _constraints_pkg;
/

Oracle9i: Program with PL/SQL A-71

Practice 17 Solutions (continued)
Business Rules

Rule 1. Sales managers and sales representatives should always receive commission. Employees

who are not sales managers or sales representatives should never receive a commission.
Ensure that this restriction does not validate the existing records of the EMPLOYEES

table. It should be effective only for the subsequent inserts and updates on the table.
Implement rule 1 with a constraint.

ALTER TABLE enpl oyees
ADD CONSTRAI NT enp_comm chk
CHECK ((job_id = 'SA REP' and conmm ssion_pct>0) OR
(job_id = "SA MAN and conmi ssi on_pct>0) OR
(job_id !'="'"SA REP" and conmi ssion_pct=0))
NOVALI DATE;
Table altered.

Rule 2. The EMPLOYEES table should contain exactly one president.

Test your answer by inserting an employee record with the following details: employee ID
400, lastnameHar ri s, first nameAl i ce, email ID AHARRI S, job ID AD_PRES, hire
date SYSDATE , salary 20000, and department ID 20.

Note: You do not need to implement arule for case sensitivity; instead, you need to test
for the number of people with the job title of President.
Implement rule 2 with atrigger.

CREATE OR REPLACE TRI GGER check pres title
AFTER | NSERT OR UPDATE OF job_id ON enpl oyees
BEG N

nmgr_constrai nts_pkg. check_presi dent;
END check pres title;
/

Trigger created.

I NSERT | NTO enpl oyees
(enmpl oyee_id, last_name, first _nane, enmil, job_ id,
hire date, salary, department _id)
VALUES (400, 'Harris',"Alice', "AHARRIS', 'AD PRES',
SYSDATE, 20000, 20);

INEERT INTO employvees
E o

EEROE at line 1

DOEA-20001: President title already exists

CEA-06512: at "PLEQL MGE. CONSTEAINTS PEG", line 15
COEA-06512: at "PLEQL CHECE _PRES _TTTLE", line 2

OEA-D408E: error duning execution of thgeer TLEOQL CHECE PEES TTILE

Oracle9i: Program with PL/SQL A-72

Practice 17 Solutions (continued)
Rule 3. An employee should never be a manager of more than 15 employees.

Test your answer by inserting the following records into the EMPLOYEES table (perform a
guery to count the number of employees currently working for manager 100 before inserting
these rows):

i. Employee ID 401, last name Johnson, first name Br i an, email ID BJOHNSQON, job ID
SA MAN, hiredate SYSDATE , salary 11000, manager ID 100, and department 1D 80.
(This insertion should be successful, because there are only 14 employees working for
manager 100 so far.)

ii. Employee ID 402, last nameKel | ogg, first name Tony, email ID TKELLGG, job ID
ST_MAN, hiredate SYSDATE , salary 7500, manager ID 100, and department ID 50.
(This insertion should be unsuccessful, because there are already 15 employees working for
manager 100.)

Implement rule 3with atrigger.

CREATE OR REPLACE TRI GGER set _ngr
AFTER | NSERT or UPDATE of nmnager id on enpl oyees
FOR EACH ROW

BEG N
-- To get round MJTATI NG TABLE ERROR
nmgr_constrai nts_pkg. new ngr := : NEW nanager i d;
END set ngr;

CREATE OR REPLACE TRI GGER chk_enps
AFTER | NSERT or UPDATE of nmnager id on enpl oyees
BEG N
nmgr_constrai nts_pkg. check_ngr;
-- if for some reason, SET _MGER is disabled,
-- the global variable is set to null
-- to stop the SELECT COUNT running
nmgr_constrai nts_pkg. new _ngr := NULL;
END chk_enps;
/
Trigger created.

| NSERT | NTO enpl oyees
(enpl oyee_id, last_name, first_name, enmail, job_ id,
hire date, salary, manager _id, departnent _id)
VALUES (401, ' Johnson','Brian', 'BJOHNSON , 'SA NAN ,
SYSDATE, 11000, 100, 80);

1 row created.
Oracle9i: Program with PL/SQL A-73

Practice 17 Solutions (continued)
SELECT count (*)

FROM enpl oyees
WHERE nanager id = 100;

| COUNT()

14

I NSERT | NTO enpl oyees
(enmpl oyee_id, last_name, first_nane, enmil, job_ id,
hire date, salary, manager _id, departnent _id)
VALUES (402,' Kellogg',"' Tony', 'TKELLOGG , 'ST_MAN ,
SYSDATE, 7500, 100, 50);

WALUES (402 Wellogg' Tony', TKELLOGG''ST_WARN',

ERROR at line 4:

ORA-Z20202: Max number of emps exceeded for 100

ORAOG512: at "FLSOL MGR_COMSTRAINTS_PKG", line 34
ORAOG512: at "FLSOL CHE_EMPS", line 2

ORA-04083: error during execution of trigger PLSGL CHEK_EMPS!

Oracle9i: Program with PL/SQL A-74

Practice 17 Solutions (continued)
Rule 4. Salaries can only beincreased, never decreased.

The present salary of employee 105 is 5000. Test your answer by decreasing the salary of
employee 105 to 4500.

Implement rule 4 with atrigger.

CREATE OR REPLACE TRI GGER check_sal
BEFORE UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
WHEN (NEW sal ary < OLD. sal ary)
BEG N
RAI SE_APPLI CATI ON_ERROR(- 20002, ' Sal ary nay not be reduced');
END check_sal ;
/

Trigger created.

UPDATE enpl oyees
SET sal ary = 4500
WHERE enpl oyee id = 105;

TPDATE employees
o

EEROE at line 1:

OEA-20002: Salary may not ke reduced

OFA-06512: at "PLEQL CHECE SAT", ine 2

OEA-D408E: error dunng execution of thgeer TLEOL CHECE SAT

Oracle9i: Program with PL/SQL A-75

Practice 17 Solutions (continued)

Ruleb5. If adepartment moves to another location, each employee of that department automatically
receives a salary raise of 2 percent.

View the current salaries of employees in department 90.

Test your answer by moving department 90 to location 1600. Query the new salaries of employees
of department 90.

I mplement rule 5 with atrigger.
CREATE OR REPLACE TRI GGER change | ocati on
BEFORE UPDATE OF | ocation_id ON departnents
FOR EACH ROW
BEG N
nmgr_constrai nts_pkg. new | ocati on(: OLD. departnment _id);
END change_ | ocati on;
/

Trigger created.

SELECT | ast_nane, sal ary, departnent _id
FROM enpl oyees
WHERE departnent _id = 90;

| LAST _NAME | SALARY | DEPARTMENT _ID

King | 24000 | a0
Kochhar | 17000 | a0
D& Haan | 17000 | a0

UPDATE depart nments
SET |l ocation_id = 1600
WHERE departnent _id 90;

1 row updated.

SELECT | ast_nane, sal ary, departnent _id
FROM enpl oyees
WHERE departnent _id = 90;

| LAST _NAME | SALARY | DEPARTMENT _ID

IKing | 24480 | 30
\Kochhar | 17340 | a0
D Haan | 17340 | a0

Oracle9i: Program with PL/SQL A-76

Practice 18 Solutions
1. Answer the following questions.
a. Canatableor asynonym beinvalid?

A table or a synonym can never beinvalidated; however, dependent objects can be
invalidated.
b. Assuming the following scenario, is the stand-alone procedure MY_PROC invalidated?
» The stand-alone procedure MY_PRCOC depends on the packaged procedure
MY_PROC_PACK.
« TheMY_PROC_PACK procedure s definition is changed by recompiling the package
body.
« TheMY_PROC_PACK procedure's declaration is not altered in the package
specification.
Although the package body is recompiled, the stand-alone procedure MY_PRCC that depends
on the packaged procedure MY_PROC_PACK is hot invalidated because the package
specification is not altered

2. Executetheut | dtree. sql script. Thisscript isavailablein your | ab folder. Print atree structure
showing all dependencies involving your NEW EMP procedure and your VALI D_DEPTI D function.
Query thei dept r ee view to see your results. (NEW EMP and VALI D_DEPTI D were created in
lesson 10, “Creating Functions.” You can run the solution scripts for the practice if you need to create
the procedure and function.)

Replace' your USERNAME' with your username in the following statements.
EXECUTE deptree fill (' PROCEDURE , 'your USERNAMVE , ' NEWEM')

PLISQL procedure successfully completed.

SELECT * FROM i deptree;

| DEPENDENCIES
IPROCEDURE PLSGL MEW _EMP

EXECUTE deptree fill (' FUNCTION , 'your USERNAVE ,
"VALI D_DEPTI D)

PLIZOQL procedure successfiully completed.
SELECT * FROM i deptree;

| DEPENDENCIES
[FUNCTION PLSQL YALID_DEPTID
IPROCEDURE PLSQL MEW _EMP

Oracle9i: Program with PL/SQL A-77

Practice 18 Solutions (continued)
If you havetime:
3. Dynamically validate invalid objects.
a. Makea copy of your EMPLOYEES table, called EMP_COP.
CREATE TABLE enp_cop AS
SELECT * FROM enpl oyees;
b. Alter your EMPLOYEES table and add the column TOTSAL with data type NUVBER(9, 2) .
ALTER TABLE enpl oyees
ADD (totsal NUMBER(9, 2));
c. Createascript fileto print the name, type, and status of all objects that areinvalid.
Thisisthe codethat your script file should contain:
SELECT obj ect _nane, object type, status
FROM user _objects

VWHERE status = 'I NVALI D ;

| OBJECT NAME | OBJECT_TYPE | STATUS
\ADD_DEPT IPROCEDURE M4 ALID
ADD_EMP IPROCEDURE MY ALID
ANNUAL COMP [FUMCTION INWALID
IUPD_EMP_SAL IPROCEDURE 1MW ALID
WALID_DEPTID [FUNCTION 1MW ALID

d. Createaprocedure called COVPI LE_OBJ that recompiles all invalid procedures, functions,
and packages in your schema.

Make use of the ALTER CQOWPI LE procedureinthe DBMS DDL package.
CREATE OR REPLACE PROCEDURE conpi | e_obj
IS
CURSOR obj _cur 1S
SELECT obj ect _type, object _nane
FROM user _obj ects
WHERE status = 'INVALID
AND obj ect _type IN (' PROCEDURE , ' FUNCTI ON' , 'PACKAGE',
" PACKAGE BODY')
CORDER BY obj ect _type;
BEGA N
FOR obj rec I N obj _cur LOOP
DBVS DDL. ALTER COWPI LE(obj rec. obj ect _type, user,
obj rec.object_nane);
END LOOP;
END conpi | e_obj ;
/
Oracle9i: Program with PL/SQL A-78

Practice 18 Solutions (continued)

Execute the COVPI LE_OBJ procedure.
EXECUTE conpi | e_obj

e. Runthe script file that you created in question 3c again and check the status column
value.

Do you still havel NVALI D objects? If you do, why arethey | NVALI D?
SELECT obj ect _nane, object type, status
FROM user _objects
VWHERE status = 'I NVALI D ;

You may still have invalid objects because the procedur e does not take into account obj ect
dependencies.

Oracle9i: Program with PL/SQL A-79

Oracle9i: Program with PL/SQL A-80

B

Table Descriptions
and Data

ENTITY RELATIONSHIP DIAGRAM

HR

JOB_HISTORY
employee_id
start_date
end date
joo_id
department_id

DEPARTMENTS
department_id
department_name
manage”_id
location id

h

N

JOBS
job_id
jok_title
min_salary
max_salary

EMPLOYEES
employee_id
first_name
last_name
emalil
phone number
hire date
job_id
salary
Commission_pct
manage” id
department_id

Oracle9i: Program with PL/SQL B-2

LOCATIONS

location_id
street_address
postal_code
City
state province
country id

4

COUNTRIES

country_id
country_name
region_id

4

REGIONS
region_id
redion_name

Tables in the Schema

SELECT * FROM t ab;

| THAME | TABTYPE | CLUSTERID
\COUNTRIES TABLE |
IDEPARTMENTS TABLE |
[EMPLOYEES TABLE |
[EMP_DETAILS_WIEW WIEW |
LOBS TABLE |
WOB_HISTORY TABLE |
ILOCATIONS TABLE |
IREGIONS TABLE |

o rows selected.

Oracle9i: Program with PL/SQL B-3

REG ONS Table

DESCRI BE r egi ons

| Hame | Null? | Type
IREGION_ID IMOT MULL INUMBER
IREGIOM_MAME | WARCHARZ(25)
SELECT * FROM r egi ons;

| REGION_ID | REGION_NAME

| 1 |Eur|:|pe

| 2 |Amerit:as

| 3 |Asia

|

4 |Middle East and Africa

Oracle9i: Program with PL/SQL B-4

COUNTRI ES Table

DESCRI BE countri es

| Mame | Mull? | Type
\COUNTRY_ID INOT MULL \CHAR(Z)

ICOUNTRY _NAME | WARCHARZ(40)

IREGION_ID | INUMBER

SELECT * FROM countri es;

[en | COUNTRY_NAME | REGION_ID

|AF£ |,-'3xrgentina | 2
AL ustralia | 3
IBE Belgium | 1
IBR Brazil | 2
cA \Canada | 2
ICH |Switzerand | 1
CN |China | 3
|DE |Germany | 1
|DI«< |Denmark | 1
EG Euypt | 4
|FH |Fran|:e | 1
|HI< |HnngKnng | 3
i lsrael | 4
Y India | 3
| COUNTRY_NAME | REGION_ID

I (Italy | 1
|JF' |.Japan | 3
(Kt | 4
N IMexico | 2
MG IMigeria | 4
ML IMetherlands | 1
|SG |Singapnre | 3
UK \United Kingdorm | 1
|LJS |United States of America | 2
Y \Zarribia | 4
T \Zirmbabwe | 4

26 rows selected.

Oracle9i: Program with PL/SQL B-5

LOCATI ONS Table

DESCRI BE | ocat i ons;

| Mame | Hull? | Type
ILOCATION_ID INOT MULL INUMBER(4)
|STREET_ADDRESS | WARCHARZ(40)
IPOSTAL_CODE | WARCHARZ(12)
\cITY INOT MULL WARCHAR2(30)
|STATE_PROVINCE | WARCHARZ(25)
[COUNTRY_ID | (CHAR(Z)
SELECT * FROM | ocati ons;
ILOCATION_ID | STREET ADDRESS |POSTAL CODE | CITY [STATE PROVINCE |CO
| 1000 1297 Via Cola di Rie 00989 \Rorma | I
| 1100 93021 Calle della Testa 10934 Merice | T
| 1200 2017 Shinjuku-ku 11689 Takyo Tokyo Prefecture |JP
| 1300 9450 Karniya-cho 6523 Hiroshirma | P
| 1400 2014 Jabberwocky Rd |[26192 \Southlake |Texas s
1500 2011 Interiors Bivd 99236 2OUh B30 e aliformia Us
ranclisco
1600 2007 Zagora St 50090 gfuur:gwick MNew Jersey us
| 1700 2004 Charade Rd 195199 Seattle ‘Washington s
| 1800 147 Spadina Ave MY 217 Taronto \Ontario (e
| 1900 |G6092 Boxwood St Y5y T2 Wyhitehorse | Yukon (o
| 2000 |40-5-12 Laogianggen 190518 Beijing | CI
| 2100 1298 Vileparle (E) 1490231 [Bormbay |Maharashtra 1M
[LOCATION_ID | STREET ADDRESS |POSTAL CODE | CITY |STATE_PROVINCE |CO
| 2400 3204 Arthur St | London | UK
Magdalen Centre, The
| 2500 | S e B |OX9 878 Oxfard Oxfard UK
| 2600 9702 Chester Road 09629850293 |Stretford |Manchester UK
| 2700 ||Schwanthalerstr. 7031 (80925 IMunich Bavaria DE
| 2800 |Rua Frei Caneca 1360 |01307-002 Sao Paulo |Sao Paulo BR
ogg (20 Rue des 1730 Geneva |Geneve cH
Corps-Saints
| 3000 Murtenstrasse 921 3095 Berm BE IcH
310 g er Brevghelstiaat gy Utrecht Utrecht ML
| 3200 [Mariano Escobedo 9991 (11932 IMexico City |Distrito Federal, — |MX

23 rows selected.
Oracle9i: Program with PL/SQL B-6

DEPARTMVENTS Table
DESCRI BE depart ments

| Mame | HNull? | Type
IDEPARTMENT_ID IMOT NULL IMUMBER(4)
IDEPARTMENT_MAME INOT MULL WARCHARZ(30)
IMAMAGER_ID | IMUMBER(E)

ILOCATION_ID | IMUMBER(4)

SELECT * FROM depart nents;

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION ID

| 10 || Adrninistration | 200 | 1700
| 20 |Marketing | 201 | 1800
| 30 |Purchasing | 114 | 1700
| 40 |Human Resources | 203 | 2400
| 50 || Shipping | 121 | 1500
| B0 I | 103 | 1400
| 70 |Public Relations | 204 | 2700
| A0 |Sales | 145 | 2600
| 90 ||Executive | 100 | 1700
| 100 |Finance | 108 | 1700
| 110 |Accounting | 205 | 1700
| 120 [Treasury | | 1700
| 130 |Cnrpnrate Tax | | 1700
| 140 |Control And Credit | | 1700
| DEPARTMENT ID | DEPARTMENT NAME | MANAGERID | LOCATION ID

| 180 |Shareholder Services | | 1700
| 160 |Benefits | | 1700
| 170 |Manufacturing | | 1700
| 180 |Construction | | 1700
| 190 |Contracting | | 1700
| 200 |Operations | | 1700
| 210 |IT Suppaort | | 1700
| 220 [NOC | | 1700
| 230 |IT Helpdesk | | 1700
| 240 |G|:nrernment Sales | | 1700
| 250 |Retail Sales | | 1700
| 260 [Recruiting | | 1700
| 270 Payrall | | 1700

27 rowes selected.
Oracle9i: Program with PL/SQL B-7

JOBS Table

DESCRI BE j obs

| Hame | Null? | Type

JOB_ID IMOT NULL WARCHARZ(10)

\JOB_TITLE INOT MULL WARCHARZ(35)

IMIN_SALARY | IMUMBER(E)

WA SALARY | IMUMBER(E)

SELECT * FROM j obs;

| JoB_ID | JOB_TITLE | MIN_SALARY | MAX SALARY
\AD_PRES President | 20000 | 40000
IAD WP iAdrinistration Yice President | 15000 | 30000
\AD_ASST Adrinistration Assistant | 3000 | G000
FI_MGR Finance Manager | 2200 | 16000
IFI_ACCOUNT |Accountant | 4200 | 9000
IAC_MGR Accounting Manager | 200 | 16000
IAC_ACCOUNT |Public Accountant | 4200 | Q000
1S4, MAN Sales Manager | 10000 | 20000
34 _REF Zales Representative | G000 | 12000
IPLI_MAAN IPurchasing Manager | 000 | 15000
\PU_CLERK IPurchasing Clerk | 2600 | 5500
|ST_MAN Stock Manager | 5500 | 5500
ST_CLERK Stock Clerk | 2000 | 5000
|SH_CLERK \Shipping Clerk | 2600 | 5500
| JoB_ID | JOB_TITLE | MIN_SALARY | MAX SALARY
IT_PROG Prograrmimer | 4000 | 10000
(WK MAN IMarketing Manager | 3000 | 15000
IMIK_REP IMarketing Representative | 4000 | Q000
|HF{_F{EF' |Human Fesources Representative | 4000 | 5000
IPR_REF Public Relations Representative | 4500 | 10500

19 rows selected.

Oracle9i: Program with PL/SQL B-8

EMPLOYEES Table

DESCRI BE enpl oyees

| Name | Null? | Type
[EMPLOYEE_ID INOT NULL IMUMBER(E)
IFIRST_NAME | WARCHARZ(20)
ILAST_MAME IMCIT MULL WARCHARZ(25)
[EMAIL IMOT NULL WARCHAR2(25)
IPHONE_MUMBER | WARCHARZ(20)
HIRE_DATE INCIT MULL IDATE

WOB_ID INOT MULL WARCHARZ(10)
ISALARY | IMUMBER(3,2)
(COMMISSION_PCT | IMUMBER(22)
IMAMAGER_ID | IMUMBER(E)
IDEPARTMENT_ID | IMUMBER(4)

Oracle9i: Program with PL/SQL B-9

EMPLOYEES Table

The headings for columns COMM SSI ON_PCT, MANAGER | D, and DEPARTMENT | Dare set to
COW MZRI D, and DEPTI Din the following screenshat, to fit the table values across the page.

SELECT * FROM enpl oyees;

[EMFLOVEE_ID |FIRST_MAME [LAST_MAME | EMAIL [FHOME_MUMEER |HIRE_DATE | JOB_D [SaL8RY [zomm [mgrid [deptid
| 100 [Stewven [King [sKING |515. 123 4567 [17-JuN-27 [AD_FRES | 24000 | | | oo
| 101 [Neena [Kochhar | [NKOCHHAR [515.123.4568 [21-3EP-89 ||aD_wP | 17000 | | 100 | 40
| 102 [Lex |De Haan |LDEHA&N ||515.123.4569 [13-JaN-53 ||aD_wP | 17000 || | 100 40
| 103 ||Mexander ||Hunold [AHUNOLD | [590.423 4567 [03-JAN-90 [IT_PROG [9000 || [10z || 60
| 104 [Bruce |Emst [BERNST ||580.423 4562 [21-Mav-91 [IT_PROG | 6000 | | 102 &0
| 105 |Dawid |Austin [DAUSTIN ||590.423 4569 [25-JuN-97 |IT_PROG | 4s00 | | 102 60
| 106 [walli |Pataballa |[WPATABAL ||590.423.4560 |ps-FEB-92 |IT_PROG | 4s00 | | 103 60
| 107 || Diana [Lorentz | [DLORENTZ | [500.423 5567 [o7-FEB-92 |[IT_PROG [4200 || [103|[&0
| 102 [Nancy |Greenbery | |NGREENBE |515.124.4569 [17-A05-94 ||[FI_MGR | 12000 | | 10| oo
| 109 |Dariel |Fanviet [DF&AET ||515.124.4169 [16-A05-94 |[FI_ACCOUNT | 2000 | | 102 | 100
| 110 [John |Chen |JCHEN ||515.124.4269 28-3EP-87 |[FI_ACCOUNT | 8200 | | 108 | 100
| 11 [lzmael |Sciama [ISCIARRA (|515.124.4269 [30-SEP-57 |[FI_ACCOUNT | 7700 | | 102 | 100
| 112 [dose hanuel || Urman [IMURMSN ||515.124.4469 o7-h4eR-98 |[FI_ACCOUNT | 7300 | | 102 | 100
| 113 [Luis |Popp |LParP |515.124.4567 [o7-DEC-99 ||[FI_ACCOUNT | 6900 | | 102 | 100
[EMPLOVEE_ID |FIRST_MAME [LAST_MAME | EMAIL [PHOME_MUMEER |HIRE_DATE | JOB_ID |SSLERY |zomm [mgrid [deptid
| 114 |[Den |Raphaely | [DRAPHEAL |[515.127 4561 [07-DEC-24 |[FLU_MAN [11000 || [oo |[20
| 115 [Mewander |[Khoo |mkHOO ||515.127 4562 [te-hey-95 |FU_CLERK | 3100 | [114 =0
| 116 |Sheli |Baida |sBaiDa ||515.127 4563 [24DEC-97 |PU_CLERK | 2900 | | 114 a0
| 117 |sigal [Tobias |sToBlAs ||515.127 4564 [24JUL-97 |PU_CLERK | 2300 | | 114 =0
| 18 |Guy [Himura [GHIMURD ||515.127 4565 [15-NDW98 ([FU_CLERK | 2600 | [114 =0
| 119 [Karen |Colmenares |[KCOLMENA 515,127 4566 [10-A05-98 |PU_CLERK | 2500 | | 114 =0
| 120 [Matthew [iiziss [WtElSs |650.123.1234 [18-JUL-95 [5T_Me | 8000 | | 100 40
| 121 || Adam [Fripp [AFRIFP |650.123.2234 [10-2FR-97 ||5T_Man | 200 || [o0 || 40
| 122 [Fayam [kaufling [PKALFLIN |[650.123.3234 [01-hte 05 [5T_MaN | 7o00 | | 100 | 40
| 123 [3harta [boliman |SWOLLMAAN |[650.123 4234 [10-0CT-97 |[5T_heM | 6500 | | 100 | 40
| 124 |Kevin [Mourges [KMOURGOS [650.123.5234 [16-HO% 98 |5T_Ma | ss00 | | 100 | 40
| 126 || Julia [Maer [JNAYER [650.124.1214 [16-JUL97 |[ST_CLERK || 3200 | [1zo | 40
| 126 [Irene [Mikkilineni [IMIKKILL | [650.124.1224 [22-3EF-82 [ST_CLERK | 2700 | | 120 40
| 127 [James [Landry |JLANDRY ||650.124.1334 [14J2aN-89 [ST_CLERK | 2400 | | 120 40

Oracle9i: Program with PL/SQL B-10

EMPLOYEES Table (continued)

1 L 1 - L
[EMPLOVEE_ID [FIRST_MAME [LAST_MAME | EMAIL

1 1 1
[FHOME_MUMEER [HIRE_DATE [JOEB_ID

1 1 1 1
[zaLoRY [eomm [mgrid [deptid

EMFLOYEE_ID [FIRST_MAME [LAST_HAME | EMAIL

[FHOHE_MUMEER |[HIRE_DATE | JOE_ID

SBLARY [momm [marid [deptid

| 128 [Steven [Markle [SMARKLE |B8D.124.1424 oe-MaR-00 ([ST_CLERK | 2200 || | 120 | 40
129 |Laura |Bis=zot [LeissaT |ms0.124.5234 [20-A05-97 |[ST_CLERK | 3300 || | 121 #0
130 [Mhozhe |Akinson [MATKINSO |[650.124.6234 |30-0CT-97 |[ST_CLERK | 2300 || [121 #0
121 |[James (o [darLOw |60, 124 7234 [16-FEB-97 |[ST_CLERK || 2800 || [1z1][#0
132 [T |misan [TioLsoM |EsD 1248224 [10-APR-93 [ST_CLERK | 2100 || [121 #0
133 [Jason [mtallin [htalLin 680,127 1934 [14Jun-96 [sT_CLERK | 3300 || | 122 | 40
134 [Michael |Rogers MROGERS |[650.127.1534 26-AUG-98 |[ST_CLERK | 2a00 || | 122 | 40
125 [k | Gee [keEE |650. 1271734 [12-DEC-99 [ST_CLERK | 2400 || | 122 40
136 [Hazel |Phittarker [HPHILTAN | [650.127 1634 o6-FEB-00 |[ST_CLERK | 2200 || | 122 #0
137 [Renshe [Laduig [RLeDwWIG |650.121.1224 [14JuL-95 [ST_CLERK | 3600 || | 123 40
138 ||Stephen [stiles [3STILES ||B50.121.3034 [26-0CT-97 |[ST_CLERK || 3200 | [1z3]| 40
129 [dahn |50 [1sED |650.121.2019 [1z-FEB-82 [ST_CLERK | 2700 || | 122 40
140 [doshua |Pate [dpaTEL 6501211234 o6-sPR-93 |[sT_CLERK | 2500 || | 123 40
141 [Trenna |Rais [TRAts |650.121.3009 [17-0CT-95 |[ST_CLERK | 3400 || | 124 #0

EMFLOYEE_ID [FIRST_MAME [LAST_MOME | EMAIL |[FHOME_MUMEER [HIRE_DATE | JOB_ID [S8LARY |eomm [mgrid [deptid
142 |Curtis |Dawies |COAMES [650.121.2094 [28-JAN-97 ([ST_CLERK | 3100 || | 124 #0
143 [Randall [zt [rraTos |6sD.121.2874 [15-bt8R-95 |[ST_CLERK | 2600 || | 124 | #0
144 |Peter [vargas |PWARGAS [650.121.2004 [ps-JuL-gs |[sT_CLERK | 2500 || | 124 #0
145 |[John [Russell [[JRUSSEL |[011.44.1344.420268 [11-0CT-95 |[SA_MAN [14000 [4 100 | a0
146 [Karen |Partners |[KPARTNER |[011.44.1344 467262 [D5-JAN-07 |58 MAN [12800 | 3| 10| @0
147 [Aberto |Emazuriz |AERRAZUR |[011.44.1344 429373 [10-MAR-97 |54 MAN [12000 | 3| 100 | a0
143 | Gerald |Cambrautt ||GCAMBRAL |[011.44.1344.619268 [15-0CT-99 |54 MAN [1000 | 3| w0 | &0
143 |[Beni [Totkey |[EZLOTKEY |[011.44.1344.429012 [20-JAN-DD |58 MAN | w800 | 2| 10| @
150 |Peter [Tusker [FTUCKER |[011.44.1344.129268 [30-JAN-97 [34_REP [toood | 3| 145 | &
151 |David |Bemstein | [DBERMSTE |[011.44.1344.395268 [24MAR-97 |54 REP | 9500 | 25 | 145 | a0
152 || Peter [Hall [PHALL [011.44.1344 473963 | |[20-2G-97 ||34 REP | soo0 || 35| 145 | &0
153 [Christopher || Olzen [COLSEN |D11.44.1344 498712 [30-M2R-93 |54 REF | #oo0 | 2| 145 | @
154 [Nanette |Cambrautt | [NCAMBRAL |[011.44.1344 927663 09-DEC-95 |54 REP | 7800 | 2| 145 | a0
155 | Dliver [Tuwvautt |OTUAAULT ([011.44.1344 496503 |23-NOW99 |54 REP | 7000 | a5 | 145 | a0

|
|
|
|
|
|
|
|
|
|
|
|
|

156 ||Janette |King [JKING [011.44.1345 429268 |30-JAN-96 |5A_REP wooo | 35| 146 | =0
157 | |Patrick |Sully [PSULLY ||011.44.1345 929268 [D4-MAR-95 |34 REP 9500 || 35| 146 | a0
158 ||Mlan [rd:Ewen [[AMCEWEN |[011.44.1345.820268 [01-ALG-96 |[SA_RER go00 || a5 [148 || =0
159 |[Lindsey |Smith [LSMITH ||011.44.1245 720262 [10-M2R-97 |54 RER soon | 3| 148 | a0
160 ||Louize |Daran [LOORAN ||011.44.1345 629262 [15-DEC-97 |34 REP 7H00 | 3| 148 | a0
161 ||Sarath |Sewal |SSEMALL ||011.44.1345 520262 [03-NOW93 |34 REF oo | 25| 148 | a0
162 |[Clara [shney [[CWISHMEY |[011.44.1346.120268 [11-NOWOT7 | [SA_RER 0500 [25| 147 [=0
163 || Daniele |Greene [DGREENE [011.44.1346 220262 [19-M&R-99 |54 REP 9500 | 15 | 147 | &0
164 | Mattea [arvins WAASRMING | [011.44.1346.329268 |24-JAN-00 |54 REP o0 | 1| 147 | a0
164 || David |Lee |DLEE 011.44.1346.529268 |23-FEB-D0 |5A_REP 6300 | 1| 147 | &0
166 | |Sundar |2nde [SANDE ||011.44.1346 629268 [24-MAR-0D ||34 REP 6400 | 1| 147 | a0
167 || Amit |Banda [ABANDA ||011.44.1346 720262 [21-APR-00 |54 REP B200 | 1| 147 | &0
163 |Liza |Dzer [LOZER ||011.44.1343 920268 [11-MAR-97 |34 REF | 11500 | 25 | 148 | &0
169 |Hamisen | |Bloom [HELOOM ||011.44.1343 520262 [23-MAR-93 |34 REF [toooo |z | 148 | a0

Oracle9i: Program with PL/SQL B-11

EMPLOYEES Table (continued)

[EMPLOYEE_ID [FIRST_HAME [LAST_NAME | [FHOME_HUMEER [HIRE_DATE | [saLARY [oomm [mgrid [deptid

EMAIL JOB_ID
| 170 | [Tayler |Fox |TF o [011.44.1343 720268 | [24-18N-98 |34 REP | 9600 | 2| 148 | a0
| 171 [iilliam |Smith [WrStATH (|011.44.1342 620262 [23-FEB-09 |54 REP | 7400 | 5| 142 | @
| 172 |Bizabeth |Bates [EBATES |[011.44.1343 520262 [24-M4R-92 |34 REP | 7300 | 5| 148 | &0
| 173 |Sundita | [sKUMAR ([011.44.1343 320262 [21-4PR-00 |34 REP [gt00 | 1 148 | a0
| 174 ||Bllen |2l |EABEL [011.44. 1644429267 || 11-MAY-96 |34 REP [11000 | 3| 149 | &0
| 175 [Mys=a [Huttan [BHUTTON |[011.44. 1644 420266 [19-M2R-97 |54 RER | ge00 | 25 | 148 | @
| 176 [Jonathon | [Taylor MTA¥LOR |[011.44. 1644 420265 [24-02F-92 |34 REP | g6o0 | 2| 149 | &0
| 177 |[Jack |vingston |[JLIMNGS [011.44.1644.429264 |23-APR-92 | [SA_REP | 8400 | | 1499 || =0
| 178 ||Kimberely | |Grant [KGRANT |[011.44.1644. 429263 [24-MAY-99 |34 REP | fooo || 45| 149 |

| 179 ||Charles [dohnsen [[CJOHNSOM | [011.44.1644.420262 [04-JAN-00 | [SA_RER [B0] 149 a0
| 120 [Mfnstor | [Taylor [mTaxyLOR ||B50 507 9276 [24-J2N-92 |SH_CLERK | 3200 | | 120 | 0
| 181 |Jean |Fleaur |FLEAUR ||650 507 9277 [z3-FER-93 |SH_CLERK || 3100 | | 120 | 0
| 152 |Martha |sullivan | MSULLIA | |650.507 9578 [21-JUMN-99 ||SH_CLERK || 2400 | | 120 | 0
| 183 || Girard | Geoni [GGEONI |[650 507 9270 [p3-FEB-00 |[SH_CLERK || 2800 || [1z0][&0
[EMPLOYEE_ID [FIRST_MAME |LAST MAME | EMAIL [PHOME_WUMBER [HIRE_DATE | JOE_ID [$ALARY |zormm [mgrid [deptid
| 134 [Mandita |sarchand | [NSARCHAN [650 5091576 [27-JaM-98 |SH_CLERK | <200 | | 121 0
| 185 |[Aexis (Bl |eBULL |650 509 2576 [20-FEB-97 ||SH_CLERK || <00 | [121 0
| 186 || Julia |Dellinger |[JOELLING | |650 509 3876 [24-JUN-82 ||SH_CLERK || 3400 | [1z]| 40
| 187 [Anthony | |Cabrio |aCaprID ||BSD 509 4276 [o7-FER-99 |[SH_CLERK | 3000 | [121 =0
| 128 [Kelly |Ehung [KCHUNG ||650 5051576 [14JUN-97 ||SH_CLERK || 3300 | | 122 | 0
| 189 |[Jernifer | |Dilly Moy ||6s0 5052476 [13-AUG-97 ||SH_CLERK || 3600 | | 122 | 0
| 190 | Timathy | Gates [TGATES [650.505.3876 [11-JUL98 (|SH_CLERK || 2900 | [1zz | 40
| 191 |Randall |Perkins |[RPERKING [650 505 4876 [15-DEC-99 [SH_CLERK || 2400 | | 122 =0
| 192 |Sarah (Bt |SBELL |65 501.1576 [o4-FER-96 |SH_CLERK | <000 | | 122 | 0
| 193 |Britney |Everstt |[BEVERETT [650.501.2876 [b3-MaR-97 (|SH_CLERK || 3900 | | 122 0
| 194 ||Samue| [:Cain [SMCCAIN | |650.501.3876 [01-JUL98 (|SH_CLERK || 3200 || [123]| 40
| 195 [vance |Jores [WIONES |[BSD 5014876 [17-M8R-99 |[SH_CLERK | 2300 | [122 =0
| 196 |[Aana [iizlsh |finaLsH |[650 507 9211 [24-APR-92 |SH_CLERK | 3100 | | 124 | 0
| 197 |Kevin |Feeney |[KFEEMEY |650.507 9822 [z3-Max-93 ||SH_CLERK || 3000 | | 124 0
[EMPLOYEE_ID [FIRST_HAME [LAST MWAME | EMAIL [PHOME_WUMBER [HIRE_DATE | JOE_ID [$ALARY |[zomm [mgrid [deptid
| 193 |Donald |OCornel [DOCONMEL [650 507 9833 [21-JuN-99 ||SH_CLERK || 2600 | | 124 0
| 199 |Douglas | |Grant |DGRANT ||650.507 9344 [13-JAM-00 ||SH_CLERK | 2600 | | 124 | 50
| 200 [Jernifer [[halen [JMvHALEN [[515.123 4444 [17-5EP-87 |[aD_AssST || 4400 || [][1o
| 201 | [Mchasl |Hartstein |WMHARTSTE | [515.123 5555 [17-FEB-96 Mk_han | 12000 | | 10| 0
| 202 |Pat |Fay |PFay |63 .123 A6E [17-AU5-97 | |mik_REP G | 201 | =0
| 203 |Susan [mzvris |smtesRis [515.123. 7707 [p7-JuN-24 | |HR_REF | 6500 | [101 40
| 204 [Hermann |[Baer [HBRAER |[515.123.8888 [p7-JUN-94 |[FR_REP [10000 || [][7o
| 205 | |Shelley |Higgins ~ |SHIGGING |515.123.2030 [07-JUN-84 | |AC_MGR | 12000 | [101 110
| 206 | [william | Bietz [weIETZ |[515.123 2181 [p7-JuN-94 ||AC_ACCOUNT | 3300 | | 205 | 110

107 rows selected.

Oracle9i: Program with PL/SQL B-12

JOB_HI STORY Table

DESCRI BE j ob_hi story

| Hame | Mull? | Type
[EMPLOYEE_ID IMOT NULL INUMBER(E)

|START_DATE INOT MULL \DATE

[END_DATE INCT MULL \DATE

JOB_ID IMOT MULL WARCHARZ(10)
IDEPARTMENT_ID | IMUMBER(4)

SELECT * FROM j ob_hi story;

| EMPLOYEEID | START DAT | END DATE | JOB_ID | deptid

| 102 [13-JAN-93 24-JUL-98 IT_PROG | ED
| 101 [21-5EP-9 27-0CT-93 AC_ACCOUNT | 110
| 101 [28-0CT-93 115-MAR-97 AC_MGR | 110
| 201 |17-FEB-96 119-DEC-29 IMIK_REP | 20
| 114 [24-MAR-95 (31-DEC-29 |ST_CLERK | 50
| 122 [01-JAN-93 31-DEC-599 |ST_CLERK | 50
| 200 |17-SEP-87 17-Jun-a3 MD_ASST | 90
| 176 [24-MAR-58 31-DEC-28 54 _REP | an
| 176 [D1-JAN-99 (31-DEC-29 S8 MAN | a0
| 200 |01-JUL-94 31-DEC-98 AC_ACCOUNT | 90

10 rows selected.

Oracle9i: Program with PL/SQL B-13

Oracle9i: Program with PL/SQL B-14

Creating Program Units by Using
Procedure Builder

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:

* Describe the features of Oracle Procedure Builder
* Manage program units using the Object Navigator

®* Create and compile program units using the
Program Unit Editor

®* Invoke program units using the PL/SQL Interpreter
* Debug subprograms using the debugger

e Control execution of an interrupted PL/SQL
program unit

®* Test possible solutions at run time

Cc-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

Y ou can use different development environments to create PL/SQL program units. In this appendix you
learn to use Oracle Procedure Builder as one of the devel opment environments to create and debug
different types of program units. You also learn about the features of the Procedure Builder tool and
how they can be used to create, compile, and invoke subprograms.

Oracle9i: Program with PL/SQL C-2

PL/SQL Program Constructs
<header>1 S| AS
o- DECLARE
BEG N
EXCEPTI ON
Tools Constructs | |.5.°.° Database Server
END: Constructs
Anonymous blocks '
— Anonymous blocks
Application procedures or Sored od
functions ored proceduresor
Application packages functions
— : Stored packages
App|IC<-’:ltI0n triggers Database trigoers
Object types Object types
C-3 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Program Constructs

The diagram above displays a variety of different PL/SQL program constructs using the basic PL/SQL
block. In general, ablock is either an anonymous block or a named block (subprogram or program unit).

PL/SQL Block Structure

Every PL/SQL construct is composed of one or more blocks. These blocks can be entirdly separate or
nested within one another. Therefore, one block can represent a small part of another block, which in
turn can be part of the whole unit of code.

Note: Inthedlide, the word “or” prior to the keyword DECLARE is not part of the syntax. It isusedin
the diagram to differentiate between starting subprograms and anonymous blocks.

The PL/SQL blaocks can be constructed on and use the Oracle server (stored PL/SQL program units).
They can also be constructed using the Oracle Developer tools such as Oracle Forms Developer, Oracle
Report Developer, and so on (application or client-side PL/SQL program units).

Object types are user-defined composite data types that encapsulate a data structure along with the
functions and procedures needed to manipulate the data. Y ou can create object types either on the Oracle
server or using the Oracle Developer tools.

Y ou can create both application program units and stored program units using Oracle Procedure Builder.
Application program units are used in graphical user environment tools such as Oracle Forms. Stored
program units are stored on the database server and can be shared by multiple applications.

Oracle9i: Program with PL/SQL C-3

Development Environments

®* iSQL*Plus uses the PL/SQL engine in the Oracle
Server

® Oracle Procedure Builder uses the PL/SQL engine
in the client tool or in the Oracle Server. It
includes:

— A GUI development environment for PL/SQL code
— Built-in editors
— The ability to compile, test, and debug code

— Application partitioning that allows drag-and-drop
of program units between client and server

Cc-4 Copyright © Oracle Corporation, 2001. All rights reserved.

iSQL*Plus and Oracle Procedure Builder

PL/SQL isnot an Oracle product in its own right. It is atechnology employed by the Oracle Server
and by certain Oracle devel opment tools. Blocks of PL/SQL are passed to, and processed by, a PL/SQL
engine. That engine may reside within the tool or within the Oracle Server.

There are two main development environments for PL/SQL : iSQL*Plus and Oracle Procedure Builder.
This course covers creating program units using i SQL*Plus.

About Procedure Builder

Oracle Procedure Builder is atool you can useto create, execute, and debug PL/SQL programs used in
your application tools, such asaform or report, or on the Oracle server through its graphical interface.

Integrated PL/SQL Development Environment

Procedure Builder's development environment contains a build-in editor for you to create or edit
subprograms. Y ou can compile, test, and debug your code.

Unified Client-Server PL/SQL Development

Application partitioning through Procedure Builder is available to assist you with distribution of logic
between client and server. Users can drag and drop a PL/SQL program unit between the client and the
server.

Oracle9i: Program with PL/SQL C-4

Developing Procedures and Functions
Using iSQL*Plus

Seript Location: |[DAdemaol01_logexec sl Browse... Load Script

Enter staterments:

REM Run the 01_addtabs. sqgl script before running this script
REM to ensure that the log_table is created.

CREATE OR REFLACE PROCEDURE log_execution
15

BEGIM

INSERT INTO log_table (user_id, log_date)
WALUES (user, sysdate);
EMD log_execution;

]
Execute | Output:lWorkScreen vl

Clear Screen Save Script

C-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using iSQL*Plus

Use a text editor to create a script to define your procedure or function. Browse and upload the script
into the iSQL*Plus input window. Execute the script by clicking the EXECUTE button.

The examplein the slide creates a stored procedure without any parameters. The procedure records
the username and current date in a database table.

Oracle9i: Program with PL/SQL C-5

Developing Procedures and Functions Using
Oracle Procedure Builder

-2 Oracle Procedure Builder | _ (O] =]
Fie Edit Window Helx

[0G_Ex] Fine| EAES

Program Unit - LOG_EXECUTION

Apply | Hewvert | Hew. .. I Delete | LCloze |

L3]| - Progran Units Il Neme: [LOG_EXECUTION (Procedure Bod
L0G_EXZCUTION [Procedure i (Procedure Body)
= PL/SOL Libraries PROCEDURE log execution IS
Attached Libraries EEGIN
Built-in Packages INSERT INTO log table {user_id, log_date)
ggz:""(g Actions VALUES (user, sysdate) ;
H Database Objects END log_execution:
E|
i
£l
q
'l Mo: Modified Successfully Compiled
I 4 I I 3

C-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Start Procedure Builder from Windows

Procedure Builder contains object navigator where you can see all the program units that you created.
Y ou can open, edit, compile, debug, and save the program units by using a graphical editor.

Oracle9i: Program with PL/SQL C-6

Components of
Procedure Builder
Component Function
Object Navigator Manages PL/SQL constructs;
performs debug actions
PL/SQL Interpreter Debugs PL/SQL code; evaluates
PL/SQL code in real time
Program Unit Editor Creates and edits PL/SQL source
code
Stored Program Creates and edits server-side
Unit Editor PL/SQL source code
Database Trigger Editor Creates and edits database triggers
Cc-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of Procedure Builder

Procedure Builder is an integrated devel opment environment. It enables you to edit, compile, test, and
debug client-side and server-side PL/SQL program units within a single toal.

The Object Navigator

The Object Navigator provides an outline-style interface to browse objects, view the relationships
between them, and edit their properties.

Thelnterpreter Pane

The Interpreter paneis the central debugging workspace of the Oracle Procedure Builder. It is awindow
with two regions where you display, debug, and run PL/SQL program units. It also interactively
supports the evaluation of PL/SQL constructs, SQL commands, and Procedure Builder commands.

The Program Unit Editor

The easiest and most common place to enter PL/SQL source codeis in the Program Unit Editor. You
can useit to edit, compile, and browse warning and error messages during application development. The
Stored Program Unit Editor is a GUI environment for editing server-side packages and subprograms.
The compile operation submits the source text to the server-side PL/SQL compiler.

The Database Trigger Editor

The Database Trigger Editor is a GUI environment for editing database triggers. The compile operation
submits the source text to the server-side PL/SQL compiler.

Oracle9i: Program with PL/SQL C-7

Developing Program Units
and Stored Programs Units

Procedure
Builder

Client-side \ ", Server-side
code "I" code
‘—-’41

@)J
\/
Ny

Program units Stored program units
in a PL/SQL library in the Oracle server
C-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Program Units and Stored Program Units

Use Procedure Builder to develop PL/SQL subprograms that can be used by client and server
applications.

Program units are client-side PL/SQL subprograms that you use with client applications, such as Oracle
Deveoper. Stored program units are server-side PL/SQL subprograms that you use with all
applications, client or server.

Developing PL/SQL Code
Client-side code:

e Create program units by using the Program Unit Editor

» Drag a server-side subprogram to the client by using the Object Navigator
Server-side code:

» Create stored programs by using the Stored Program Unit Editor

» Dragaclient-side program unit to the server by using the Object Navigator

Oracle9i: Program with PL/SQL C-8

Procedure Builder Components:
The Object Navigator

Object Navigator

@7*”}9[&"] Units ﬂ Find: I

=T -

LEAVE_EMP [Procedure BEody]

e = LOG_EXECUTION [Frocedure Body) L 4
= Specification o

. LOG_ERECUTION;

F-References

i i A USERLOG_TABLE [T able)
@ E--Referenced By
[1

o LEAWE_EMP [Procedure Body)
- PLASOL Libranes

- Attached Libraries

- Built-in Packages

- Debug Actions

- Stack

- atabase Objects

g

L o

C-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of the Object Navigator
The following descriptions correspond to the numbered components on the slide:
1. Locationindicator: Shows your current location in the hierarchy.

2. Subobject indicator: Allows you to expand and collapse nodes to view or hide object information.
Different icons represent different classes of abjects.

3. Typeicon: Indicates the type of object, followed by the name of the object. In the example, the
icon indicates that LOG_EXECUTI ONisaPL/SQL block. If you double-click theicon, Procedure

Builder opens the Program Unit Editor and displays the code of that object.
4. Object name: Shows you the names of the objects.
5. Findfield: Allows you to search for objects.
Object Navigator

The Object Navigator is Procedure Builder's browser for locating and working with both client and
server program units, libraries, and triggers.

The Object Navigator allows you to expand and collapse nodes, cut and paste, search for an object, and
drag PL/SQL program units between the client and the server side.

Oracle9i: Program with PL/SQL C-9

Procedure Builder Components:
The Object Navigator

-2 Dracle Procedure Builder | _[O]x]
Fie Edit ‘Window Hely

7, Dbject Navigator M=1E= | { & Program Unit - LOG_EXECUTION =l E
LOG_E] Find spple | mever | Mew. | Delete | Cise | mep
E-Program Units “If| Name: [LOB_EXECUTION (Frocedure Body)
LOG_ExZCUTION [Procedure

[FPL/SQL Libraries PROCEDURE log_exesution TS
[Attached Libraries BEGIN

Built-in Packages

INSERT INTO log_table (user_id, log date]
VALUES (user, sysdate);
Databsse Dbjscts ENE log execution:

5 || L+Debug Actions

q
Mo M odified

Successhully Compiled

C-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of the Object Navigator: Vertical Button Bar

The vertical button bar on the Object Navigator provides convenient access for many of the actions
frequently performed from the File, Edit, and Navigator menus.

1. Open: Opens alibrary from the file system or from the Oracle server.
Save Saves alibrary in the file system or on the Oracle server.

2. Cut: Cutsthe sdected object and stores it in the clipboard. Cutting an object also cuts any objects
owned by that object.

Copy: Makes a copy of the seected object and stored it in the clipboard. Copying an object also
copies any objects owned by that object.

Paste: Pastes the cut or copied module into the sdected location. Note that objects must be copied
to avalid location in the object hierarchy.

3. Create Creates anew instance of the currently selected object.
Ddete: Ddetes the sdected object with confirmation.

4. Expand, Collapse, Expand All, and Collapse All: Expands or collapses one or all levels of
subobjects of the currently sdected object.

Oracle9i: Program with PL/SQL C-10

Procedure Builder Components:
Objects of the Navigator

®* Program Units

— Specification

— References

— Referenced By
®* Libraries
* Attached Libraries
* Built-in Packages
®* Debug Actions
* Stack
* Database Objects

C-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Objects of the Object Navigator

By using the Object Navigator, you can display a hierarchical listing of all abjects you have access to
during your session.

Object Nodes Description

Program Units | PL/SQL constructs that can be independently recognized and processed by the
PL/SQL compiler.
Program Units: | Name, parameter, and return type (functions only) of the program unit.
Specification
Program Units: | Procedures, functions, anonymous blocks, and tables that the program unit
References references.
Program Units: | Procedures, functions, anonymous blocks, and tables that reference the
Referenced By | program unit.

Libraries Collection of PL/SQL packages, procedures, and functions stored in the
database or the file system.

Attached Referenced libraries stored in the database or the file system.

Libraries

Built-in PL/SQL constructs that can be referenced while debugging program units.

Packages

Debug Actions | Actions that enable you to monitor or interrupt the execution of PL/SQL
program units.

Stack Chain of subprogram calls, from the initial entry point down to the currently
executing subprogram.

Database Collection of server-side stored program units, libraries, tables, and views.

Objects

Oracle9i: Program with PL/SQL C-11

Developing Stored Procedures

4 N
Oracle { Code }
Procedure
Builder
[Compile and Save]
NS
4 I

Oracle[Source code]

[P code J

- /
Execute

C-12 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Develop Stored Program Units
Use the following steps to develop a stored program unit:
1. Enter the syntax in the Program Unit editor.
2. Click the Save button to compile and save the code.
The source codeis compiled into P code.

Oracle9i: Program with PL/SQL C-12

Procedure Builder Components:
The Program Unit Editor

-® Oracle Procedure Builder - a useri@oraclefi
Fie Edil Progiam Winduw Hel

* Pragram Unit BAISE_SALARY

[RaIsE_saLav (=] Fin | | Arpk | Tevert i Hew...
[| = Program Units Meme: {RAISE_SALARY (Procedure Eody]
& FoF-E EE AR [Prrredive = = N —

£ H il--SpeciIicatinn PROZEDURE raise salary (v_empno narkber, =
----- ; T Meferences v_newn sal narber) —
o - Refsenced By Is L
0 “1PL/SOL Libraries BEGIK - 3
= | _-Attached Libraries UPLATE emp
liEJ 1 Buik-in Pat_:kaues ZET =al = v_n=v_sal

~I"Dehug Artinns WHERE SHLLL = v _EIPIL;

o | o Stack . CONNMIT:

L1 3 Databasc Dbjccts T

x_ END raise_salary:

|

£

[

=

R 2

sl beoified Scocessiuly Cunpiled

C-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Program Unit Editor
The following descriptions correspond to the numbered components on the slide:
1. Compile, Apply, Revert, New, Delete, Close, and Help buttons
2. Name drop-down list
3. Sourcetext pane

Program Unit Editor

Use the Program Unit Editor to edit, compile, and browse warning and error messages during
development of client-side PL/SQL subprograms.

To bring a subprogram into the source text pane, select an option from the Name drop-down list. Use the
buttons to decide which action to take once you arein the Program Unit Editor.

Oracle9i: Program with PL/SQL C-13

-2 Oracle Procedure Builder - a_user@oracleBi
File Edit Program ‘window Help
. Stored Program Unit - A_USER.TAX EEE|
I TAX [Func x| Find % Hew i Hevert | Drop | Close i
@?‘ #-Program Units Owner: IA_USEFI ;I Mame: ITAX [Function] j |
— | [1-PL#SAL Libraries =1
[J-Attached Libraries FUNCTION tax i
- | # Built-in Packages (v_salary NUMEER) e
| [1-Debug Actions RETURM NUMEER
i | I Stack]
B 5 Database Objects EEGIN
e - A_USER RETURN (v salary * 0.08):
SRS El- Stored Program Units END: -
dh B T4 [Function)
. PL/SQL Libraries
m - Tables
o B Views
F- Types
-3, MDSYS
= E-2 ORDSYS
EE| -3, 575
I #- &, STSTEM
s #- &, TRAVEL
el |
| 8| Mot Modified
C-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The Stored Program Unit Editor

Use the Stored Program Unit Editor to edit server-side PL/SQL constructs. The Save operation submits
the source text to the server-side PL/SQL compiler.

Oracle9i: Program with PL/SQL C-14

Creating a Client-Side
Program Unit

- Nrarde Procedixe Auilder - a_uzen@nraciedi

Fle Edit Navigaly Focram inooes e

s Ubgec! Mavigalar B Program Unit - NAISC_SALANY

||"'°9'3m U"j Frd | ‘}i- Compile J Apply Nevert Hew. .. 1 Drelet:
B8 Program Linit| Mamie: | RalSE_SALART" [Frocedure Body) =]

- PLAS AL Librarics
[~ Attached Librarice FRUCEDURE rslse_salacy
O Duilt-in Mackages Ty oempoL NUNEER,
Ll Debua Actions v_new_s=1 NUMDER)
[~ Flach - -

- Database Objects

Iz

BEGZH
Mewr Hrogram Unik UPDATE exmp
= aF7 asl = w_new_=3l
Cirale - WHERE empro = v_empna:
Hams: ;Ialzt:_:;alzy -
'|'l"-|t== e Tty mrrrremymer]
> = Procedure

i Funchion

4 fdefif i
W anlace S Error 0 at [nz 9. counn 3

© Package Boe Ctatement ignored
£ Tape Spec

== u.: [Hz (eax DU

£ Tmie Farky
L 114 I Cam |
= +odified Compiled wit E rors
C-15 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Client-Side Program Unit

Sdect the Program Units object or subobject.
Click the Create button. The New Program Unit dialog box appears.

Enter the name of your subprogram, select the subprogram type, and click the OK button to accept
the entries.

The Program Unit editor is displayed. It contains the skeleton for your PL/SQL construct. The
cursor isautomatically positioned on the line beneath the BEG N keyword. Y ou can now write the
code.

When you finish writing the code, click Compilein the Program Unit Editor.

Error messages generated during compilation are displayed in the compilation message pane in the
Program Unit window. When you select an error message, the cursor moves to the location of the
error in the program screen.

When your PL/SQL codeis error free, the compilation message disappears, and the Successfully
Compiled message appears in the status line of the Program Unit Editor.

Note: Program units that reside in the Program Units node are lost when you exit Procedure Builder.
Y ou must export them to afile, savethemin a PL/SQL library, or store them in the database.

Oracle9i: Program with PL/SQL C-15

-% Dracle Procedure Builder - a user@oracledi
Fie Edil: Havigalo - Prociam - Adirndos Hzlp
Objcect Havigotor
i Stured F'le Filld.l J
=% | +I- Frogram Units Wiy Mo i Lo i Wk Je@
| J-PL/SOL Libraries S PR Heme | TAX [Fomch S
2] _1-Attached Libraries o | mei (Funchian) i
~ | #-Buik-in Packages TIUNCTICN t o —
& g"f_’:b‘;ﬂ Actions ‘w_salary KUMEER =
@ L Objects RETURN KUNEER
[| 34 USER -4
ISR e Priogram @inits | B
o] EETURY (v =alacy - C.02);
(: >_) e [CEE QR 40w Frooram Urf (S -
‘;i_l ©T Wier
i LE-Typl Mam |as-
i . ﬁMDS
“'IPS
= . B 5vS i BUL
= Fum
| B-2svs T
2 G- J TR l.‘" Par'l
llf" Tlﬂ:ll —
5l
[El
Mok Modif ed Successfully Comailed
C-16 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Server-Side Program Unit

1

Sdect the Database Objects node in the Object Navigator, expand the schema name, and click Stored
Program Units.

Click Cresate.

In the New Program Unit window, enter the name of the subprogram, sdect the subprogram type,
and click OK to accept the entries.

The Stored Program Unit editor is displayed. It contains the skeleton for your PL/SQL construct. The
cursor isautomatically positioned on the line beneath the BEG N keyword. Y ou can now write the

code.
When you finish writing the code, click Save in the Stored Program Unit Editor.

Error messages generated during compilation are displayed in a compilation message at the bottom
of the window. Click an error message to move to the location of the error.

When the PL/SQL codeis error-free, the compilation message does not appear. The Successfully
Compiled message appears in the status line at the bottom of the Stored Program Unit Editor
window.

Oracle9i: Program with PL/SQL C-16

Transferring Program Units Between
Client and Server

-I' Dracle Procedure Builder a_uzcr®oraclcgi

File Edit Hawigatar Program - Afindow Help

Object Havigator

Apply

Compile I

Tk | New_ ..

ﬂ@ﬂ&l|;ﬁ‘dﬂ‘

C-17

=2 g M ame: IRAISE_SALAHY [Procedure Hody)
&4) LIS Gl et PROCEDURE raise salary
| Attached Libraries fv_mmpru WUMBER,
"-Built-in Packages w_new =al NUMEBEER)
[1- Debug Actions I3
1 Stack BEGIN
= Databaze Objects UFLATE emp
JET Sl - e w_ﬁul
] WHEEE ewpno = ¥ empno;
o BF) Ta [Funstion) COMM-T: -
PL/5QL Libraries END:

i 2, SYSTEM
G- & TRavEL

Copyright © Oracle Corporation, 2001. All rights reserved.

Application Partitioning

Using Procedure Builder you can create PL/SQL program units on both the client and the server. You
can also use Procedure Builder to copy program units created on the client into stored program units on
the server (or vice versa). You can do this by a dragging the program unit to the destination Stored
Program Units node in the appropriate schema.

PL/SQL codethat is stored in the server is processed by the server-side PL/SQL engine; therefore, any
SQL statements contained within the program unit do not have to be transferred between a client

application and the server.

Program units on the server are potentially accessible to all applications (subject to user security

privileges).

Oracle9i: Program with PL/SQL C-17

Procedure Builder Components:
The PL/SQL Interpreter

B PL/SOL Interpreter [_ 10O =]

Easfp i | vyleenm] %% |

.2, Client Program Unit: RAISE_SALARY [Procedure Body)

Oco0l TROCEDUIE raioc ogalcry ﬂ

acooz v _ecmpao NUNEEL,

ocons W _ncw ool HMUKBER)

ocond: IS

oCoos - BECIN -
FEREE :_I_I

| E-[E RAISE_SALLRY [Fracedue Eady)
I1-PLISAL Lihratins
[1- Attached Libraries

- Built-in Packages
- Debug Actions

[1-Stack e
E—Inmahase Nhiertz _lj
4 *
FLAZQL> raisze_szalary (7369, 1000); AI
FPLSSQL> SELECT * FROM emp

+> THERE enpno = 7369:

ZMPNG EMAME JCE HGR HIREDATE SAL COOM DEPTHC

T 77

Tigd GMITH CLERE 7902 _7-DEC-8C 1000, 10 Z0

1 cow gelected.

PLfSOL: | ;_Il

Cc-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of the PL/SQL Interpreter
1. Source pane: Displays the PL/SQL code of your program.

2. Navigator pane: Displays the sameinformation as the Object Navigator, but within the PL/SQL
Interpreter.

3. Interpreter pane: Allows you to execute subprograms, Procedure Builder commands, and SQL
statements.

To execute subprograms, enter the name of your PL/SQL program at the PL/SQL prompt, provide any
parameters, and terminate with a semicolon.

PL/ SQL> construct _nane [paraneterl| paraneter?2, .];

To execute SQL statements, enter your SQL statement and terminate with a semicolon.
PL/SQ.> SELECT *
+> FROM depart nents;

Oracle9i: Program with PL/SQL C-18

Mew Program Unit] ¥ Program Unit - MY_MESSAGE | [O] =]
Apply | Hevest | MNew_ .
MHame: ImP_mESSBQEI
Narme: | MY_MESSAGE [Procedure Body) =l
Types
& Procedure PROCEDURE my message Er
ot 7 [V message VARCHLRZ) —
" Function 5
i~ Package Spec EEGIN
i~ Package Body TEXT_I0O.PUT_LINE (v_message):
= Tiype Spec END:
= Iiipe Body
0K Cancel Help
el Bl
Mot Modified Succezsfully Compiled
C-19 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Client-Side Program Units

1
2.
3.

7.

Sdect the Program Units node in the Object Navigator.
Click Create. The New Program Unit dialog box appears.

Enter aname for the procedure. Note that the default program unit typeis Procedure. Click OK to
accept these entries. The program unit name appearsin the Object Navigator.

— TheProgram Unit editor appears, containing the procedurenameand | S, BEA N, and END
statements.

— Thecursor isautomatically positioned on the line beneath the BEG N keyword.
Enter the source code.

Click Compile. Error messages generated during compilation are displayed in the compilation
message pane (the lower half of the window).

Sdect an error message to go to the location of the error in the source text pane.

When successfully compiled, a message is displayed in the lower right hand corner of the Program
Unit Editor window.

Save the source codein afile (M) File > Export.

Note: The keywords CREATE, and CREATE OR REPLACE and the forward slash areinvalid in
Procedure Builder.

Oracle9i: Program with PL/SQL C-19

Creating Server-Side Program Units

-2 Oracle Procedure Builder - a_user@oracleBi
File - Edit Program - Window Help

M ¥, Stored Program Unit - A_USER LEAYE_EMP

Hew

0]

Drop | Lloze

"""""" [1-Attached Libraries fv_id IN emp.ewpnosTYPE)
3(---Buill-in Packages I3
F:zj [1-Debug Actions BEGIN
= | (1 Stack DELETE FROM emp
[% E---Qalahase Objects WHERE empno = wv_id;
i B &_USER log execution;
Create —_— q‘}a'_l = Stored Program Units END leave enmp
[E] £ E_F WP [Procedus] -
Del ete E L -iF LOG_EXECUTION [Procedure
____ B8 T4 [Function)
-PL/SOL Libraries
= -Tables
F-Views
- Types
i - &, MDSYS
e H- &, ORDSYS
Bl & 575
- 2, SYSTEM - N
OB ThANTL I I I
I_i_l Mot Modified Successfully Conmpile

C-20

=1~ Program Units
[RAISE_SALARY [Procedure Body)
[~ PL/SOL Libraries

FPROCEDURE leawve emp

Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Server-Side Program Units

N o g s~ DN

Sdect File > Connect. Then enter your username, password, and database connect string.
Expand the Database Objects node in the Object Navigator.
Expand your schema hame.
Click the Stored Program Units node under that schema.
Click Create in the Object Navigator.
Enter the name for the procedure in the New Program Unit dial og box.

Click OK to accept.
8. Enter the source code and click save.

Note: The keywords CREATE, and CREATE OR REPLACE and theforward slash areinvalidin
Procedure Builder.

Oracle9i: Program with PL/SQL C-20

The DESCRI BE Command in
Procedure Builder

- Dracle Procedure Builder H=] E3
File - Edit Wiew [Havigater - Pragram Debug Window Help

B PLSOL Interpreter 1B =1 B3

[FoRMAT_P x| Find | W[4 I
Program Units ﬁ Eg Client Program Unit: FORMAT_PHOME [Procedure Body]
FORMAT_PHOME [Procedure Body) 00001 PROCEDURE format phone
PL/SAL Libraries ooooz {v phone no IN OUT VARCHARZ)
Attached Libraries oooosz Is i

Built-in Packages 00004 BEGIN

Debug Actions
Stackg oooos v_phone no:='{']||SUBSTR (v phone no,1,3)||

Database Objects 00006 "1 |SUBSTE (v phone no,.4,3) ||
oooaT '=!| | SUBSTE.(v_phone no,7) ;

|»

] DOO0S END format phone:

¥

Ll PL/3QL> .DE3ICRIEE PROCEDURE FORMAT PHONE
Procedure Body: FORMAT PHONE

il Parameters:

=] w_phone_no IN OUT VARCHARZ

Compiled: YEI

= Cpen: NO

E References:

Package Spec S3TANDARD
Referenced by:

_lﬂ PL/S0L> |
L

-

C-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Describing Procedures and Functions

To display a procedure or function, its parameter list, and other information, usethe. DESCRI BE
command in Procedure Builder.

Example
Display information about the FORMAT _PHONE procedure.

Oracle9i: Program with PL/SQL C-21

Listing Code of Stored Program Units

Object Havigator

[ADD_DEPT 7] Find | S| 2
[| O~ Program Units F. Stored Program Unit - A_USER ADD_D... M=l E3
— | [~ PL/SQL Libraries
&eﬁ [1-Attached Libraries Hew | Save | Hevert i Drop
—— | [Built-u
5 o E';'.',‘,,'g“ rackages Owner: [A_USER =] Name: [ADD_DEPT (Pi 7]
: [Stack —
StO red ‘-?'%- = Database Objects PROCEDURE add_dept ox
|_:_|5l A_UUSER [v_name IN dept.dnames3TYPE DEFAT
pro cedure i - Stored Program Units v_loc IN dept.locsTYPE DEFAULT
) Iz
. L
Icon ,E §8) OVER_PACK (Package 5 | BEGIN
I OVER_PACK, [Package B INSERT INTO dept
i & QUERY_EMP [Fracedurs] VALUES (dept_deptno.NEXTVAL,v n
Expan ad—> PL/SQL Libraries END add_dept:
= #- Tables
H- Views
and —> 2 B Yiews
e - 2B, 575
i
COIIapse - &, SYSTEM
buttons
=
I 4 I I PI
U Mot Madified Successfully Comnpiled
C-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Code of a Stored Procedure

1

o~ w0

Sdect File > Connect and enter your username, password, and database.
Sdect Database Objects and click the Expand button.

Sdect the schema of the procedure owner and click the Expand button.
Sdect Stored Program Units and click the Expand button.

Double-click theicon of the stored procedure. The Stored Program Unit editor appears in the
window and contains the code of the procedure.

The ADD_DEPT Procedure Code

The exampl e above shows the PL/SQL Program Unit editor with the code for the ADD _DEPT
procedure.

The code can now be saved to afile.

1
2.

Sdect File > Export and enter the name of your file in the Open dialog box.
Click OK. A file containing your stored proceduretext (. pl s extension) is created.

Oracle9i: Program with PL/SQL C-22

C-23

® Program Unit - ADD_EMP

Navigating Compilation Errors
iIn Procedure Builder

Compile | Apply | Revert Delete

Name::ilhDD_EHP’ [Procedure Body]

PROCEDURE add emp IS

BEGIN
INSERT INTQ emp (empno, ehname,
VALLUES (7823, 'KEHCE', 30)

END:

deptno)

-

todified Compiled with Emrors

Copyright © Oracle Corporation, 2001. All rights reserved.

How to Resolve Compilation Errors
Click Compile.

Sdect an error message.
The cursor moves to the location of the error in the source pane.

1
2.

Resolve the syntax error and click Compile.

Oracle9i: Program with PL/SQL C-23

Procedure Builder Built-in Package:
TEXT 1O

®* The TEXT_| Opackage:

— Contains a procedure PUT_LINE, which writes
information to the PL/SQL Interpreter window

— Is used for client-side program units
® The TEXT_| O PUT_LI NE accepts one parameter

PL/ SQL> TEXT IO PUT_LI NE(1);
| 1 I

C-24 Copyright © Oracle Corporation, 2001. All rights reserved.

TEXT | OBuilt-in Package

You can use TEXT | O packaged procedures to output values and messages from a client-side
procedure or function to the PL/SQL Interpreter window.

TEXT _| Oisabuilt-in package that is part of Procedure Builder.

Use the Oracle supplied package DBMS _OUTPUT to debug server-side procedures, and the Procedure
Builder built-in, TEXT | O, to debug client-side procedures.

Note:

e You cannot use TEXT | Oto debug server-side procedures. The program will fail to compile
successfully because TEXT | Ois not stored in the database.

» DBMs_QUTPUT does not display messages in the PL/SQL Interpreter window if you execute a
procedure from Procedure Builder.

Oracle9i: Program with PL/SQL C-24

Executing Functions in
Procedure Builder: Example

Calling environment TAX function

1000 L v_val ue

T——RETURN (computed value)

Display the tax based on a specified value.

PL/ SQL> . CREATE NUMBER x PRECI SI ON 4
PL/SQL> : x := tax(1000);

PL/ SQL> TEXT_I O PUT_LINE (TO_CHAR(:X));
80

C-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Execute the TAX function from Procedure Builder:

1. Create a host variable to hold the value returned from the function. Usethe . CREATE syntax at
the Interpreter prompt.

2. Create aPL/SQL expression to invoke the function TAX, passing a numeric value to the function.
Note the use of the colon (:) to reference a host variable.

3. View theresult of the function call by using the PUT _LI NE procedurein the TEXT | Opackage.

Oracle9i: Program with PL/SQL C-25

Creating Statement Triggers

[Database Trigger

Table Owner: Ut 21 Name:
;A_USEH _'J EMP x| |SECURE_EMP j
— Triggenng | [Stat t OF Col

Before | | ™ UPDATE ’7

i~ After % INSERT |

{* Instead OF |

| | [DELETE
|

- For Each

{* Statement { BRow

Referencing DLD Ae: MEW fgo: I

When:
Trigger Body:
BEGIM -

IF TO CHAR (SYSDATE, 'DY') IN ('SLT','SUN')
OR TO CHAR({SYSDATE, 'HHz4') NOT BETWEEN '0S5' AND '18'
THEN
RAISE APPLICATION ERROR (-20500,
'You may only insert into the EMP table during business hours.'):

END IF:

END; >
Hew | Save | Revert I Drop | LCloze I Help |
C-26 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Statement Trigger When Using Procedure Builder

Y ou can also create the same BEFORE statement trigger in Procedure Builder.

1. Connect to the database.

Click the Database Objects node in the Object Navigator.
Sdect the Database Trigger editor from the Program menu.
Sdect atable owner and a table from the Table owner and Table drop-down lists.
Click New to start creating the trigger.
Sdect one of the Triggering option buttons to choose the timing component.
Sdect Statement to choose the event component.
Inthe Trigger Body region, enter the trigger code.

Click Save. Y our trigger code will now be compiled by the PL/SQL enginein the server. Once
successfully compiled, your trigger is stored in the database and automatically enabled.

Note: If thetrigger has compilation errors, the error message appears in a separate window.

© 0 N o g s~ N

Oracle9i: Program with PL/SQL C-26

Creating Row Triggers

[Database Trigger

g Table: - |

Table O wner: —1 Mame:
IA_USEH _‘_! EMP e IDEHIVE_CUMMISSIUN_PET .I..I
— Triggering — Statement ————————————— — Oi Cal

£+ Before [# UPDATE | [EMPND =

| |EMAME
L [INSERT JOB
' Instead OF MGR
I~ DELETE | HIREDATE
| SaL LI

— For Each

i Statement 1+ Bow

Referencing OLD As: |OLD NEW Az iNEW

When:
Trigger Body:
BEGIN -

IF NoOT (:NEW.JOE IN ('MAMNAGER' , 'PRESIDENT')])

AND :NEW.3AL > 5000
THEM
RATSE_APPLICATION_ ERROR
(-20202, 'EMPLOYEE CANNOT EARN THIS AMOUNT'):

END IF:

END; -
New Revert | Drop I Lloze | Help |
c-27 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Row Trigger When Using Procedure Builder

Y ou can also create the same BEFORE row trigger in Procedure Builder.

1. Connect to the database.

Click the Database Objects node in the Object Navigator.
Sdect the Database Trigger Editor from the Program menu.
Sdect atable owner and a table from the corresponding drop-down lists.
Click New to start creating the trigger.
Sdect the Triggering option button to choose the timing component.
Sdect the appropriate Statement check boxes to choose the events component.
In the For Each region, select the Row option button to designate the trigger as arow trigger.

Complete the Referencing OLD As and NEWASs fidlds if you want to modify the correlation
names. In the When field, enter a\VWHEN condition to restrict the execution of the trigger. These
fields are optional and are available only with row triggers.

10. Enter thetrigger code.

© o N kR~ WD

11. Click Save. Thetrigger codeis now compiled by the PL/SQL enginein the server. When
successfully compiled, the trigger is stored in the database and automatically enabled.

Oracle9i: Program with PL/SQL C-27

Removing Server-Side Program Units

Using Procedure Builder:

Connect to the database.

Expand the Database Objects node.

Expand the schema of the owner of the program unit.
Expand the Stored Program Units node.

Click the program unit that you want to drop.

Click Delete in the Object Navigator.

Click Yes to confirm.

N o s DR

C-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Server-Side Program Unit
When you decide to deete a stored program unit, an alert box displays with the following message:
"Do you really want to drop stored program unit <program unit name>?". Click Y es to drop the unit.
In the Stored Program Units Editor, you can also click DROP to remove the procedure from the server.

Oracle9i: Program with PL/SQL C-28

Using Procedure Builder:
1.

2.
3.
4

C-29

Removing Client-Side
Program Units

Expand the Program Units node.

Click the program unit that you want to remove.
Click Delete in the Object Navigator.

Click Yes to confirm.

Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Client-Side Program Unit
Follow the steps in the dide to remove a procedure from Procedure Builder.

If you have exported the code that built your procedureto atext file and you want to delete that file from
the client, you must use the appropriate operating system command.

Oracle9i: Program with PL/SQL C-29

Debugging Subprograms by Using
Procedure Builder

-2 Oracle Procedure Builder =] E3
File Edit “iew Mavigator Program [Debug Window Help
“-, Object Havigator 1 =] B¥ PL/SOL Interpreter H=1 E3
: [=== : [
[CBTES1Z] Finet | RAES| EEEJZ) [2] EPs (22 =] Find | K2 3|
Program Units 3 Eg Client Program Umit: CBTEST [Procedure Body]
CBTEST [Procedure Body) 00004 EBEGIN -
PL/SAL Libraries Dooo0s for I in 1..a loop
Attached Libraries ooooes ci= c+l:
g';'lljl:n::g::fes E (Dl]l text _io.put line('times through the loop :' ||to_char(i)]:
Stank 00008 end loop: =

Database Objects

B2 CBALWENS

- S5tored Program Units
&2 ADD_EMP [Procedure)
5 CBTEST [Procedure]
2 CHECK_PK_CUST [Prc
82 GET_PRODUCT_IMAL
&2 MY _FUMNC [Function]
&2 MY_PROC* [Procedurs

Program Units A
CETEST [Procedure B ady)
PL/SOL Libraries

Attached Libraries

Built-in Packages

Debug Actions

Stack

Database Objects

PL/SQL Libraries |—|v

T§hles U =

Views PL/SQL> .break . =
B8, 5Y5

Ereakpoint #1 installed at line 7 of CETEST
-8, SYSTEM

|| s>
) 4

C-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Debugging Subprograms by Using Procedure Builder

Y ou can perform debug actions on a server-side or client-side subprogram using Procedure Builder.
Use the following steps to load the subprogram:

1. Fromthe Object Navigator, sdect Program > PL/SQL Interpreter.

2. Inthe menu, select View > Navigator Pane.

3. Fromthe Navigator pane, expand either the Program Units or the Database objects node.
4. Locatethe program unit that you want to debug and click it.

Oracle9i: Program with PL/SQL C-30

Listing Code in the Source Pane

= PLSUL Interpreter hd | a
EE
00001 PROCELIURE ny message L*
ooz (v_wessage VARCHAR:) L
nooos IS
o004 BEGIN
E(01) TEET_IO.FUT_LINE (v_ti=ssags) | *
+
GE [Focedure Body)
@)9 + Attached Libranes
+ Duilt-in Mackages
Nehug Actinns
& Stack
Database Objects 3
O
PL/2QL> .kreak . +
< :) 3 Ereakpoint #1 installec at lins= 5 of IV MEZ3AGE
PL/SOL > j
+

C-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Code in the Source Pane
Per for ming Debug Actionsin the I nter preter

Y ou can use the Object Navigator to examine and modify parameters in an interrupted program. By
invoking the Object Navigator within the Interpreter, you can perform debugging actions entirely within
the Interpreter window. Alternatively, you can interact with the Object Navigator and Interpreter
windows separately.

1. Invoking the Object Navigator Pane

— Sdect PL/SQL Interpreter from the Tools menu to open the Interpreter if it is not already
open.

— Sdect Navigator Pane from the View menu.
— TheNavigator paneis inserted between the Source and the Interpreter panes.
— Drag the split barsto adjust the size of each pane.
2. Listing Source Text in the Sour ce Pane
— Click the Program Units node in the Navigator pane to expand thelist.
Thelist of program units is displayed.
— Click the object icon of the program unit to be listed.
3. The source codeislisted in the Sour ce pane of the I nterpreter.

Oracle9i: Program with PL/SQL C-31

Setting a Breakpoint

= PL{SQL Interpreter u =
00001 PROCEDURE count lcops +
(NN (v_count LN NUMEEH)

oooos IS

00004 EBEGIN

oooos FCR i .n 1..w_ccunt LOOP

E102) TEXT _IO.PJT LINE { Times through loop: '||TO _CHAR(i)):

nnnn.? FHD T.OOP:
O0003 END:

BEreskpoint #2 installed st line & of COU'NT_;OOPS
FL/S0L>

: FL/50Ly Jhpreak .

C-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Setting a Breakpoint

If you encounter errors while compiling or running your application, you should test the code and
determine the cause for the error. To determine the cause of the error effectively, review the code, line
by line. Eventually, you should identify the exact line of code causing the error. You can use a
breakpoint to halt execution at any given point and to permit you to examine the status of the code on a
line-by-line basis.
Setting a Breakpoint
1. Doubleclick the executable line of code on which to break. A "B(n)" is placed in the line where
the break is set.
2. ThemessageBr eakpoint #n installed at line i of nameisshowninthe
Interpreter pane.

Note: Breakpoints also can be set using debugger commands in the Interpreter pane. Test breakpoints by
entering the program unit name at the Interpreter PL/SQL prompt.

Monitoring Debug Actions

Debug actions, like breakpoints, can be viewed in the Object Navigator under the heading Debug
Actions. Double-click the Debug Actions icon to view a description of the breakpoint. Remove
breakpoints by double-clicking the breakpoint line number

Oracle9i: Program with PL/SQL C-32

C-33

Debug Commands

Copyright © Oracle Corporation, 2001. All rights reserved.

Debug Commands

Reviewing Code

When a breakpoint is reached, you can use a set of commands to step through the code. Y ou can
execute these commands by clicking the command buttons on the Interpreter toolbar or by entering
the command at the Interpreter prompt.

Commands for Stepping through Code

Command | Description

Step Into Advances execution into the next executable line of code

Step Over | Bypasses the next executable line of code and advancesto the
subsequent line

Step Out Resumes to the end of the current level of code, such asthe
subprogram

Go Resumes execution until either the program unit endsor is
interrupted again by a debug action

Reset Aborts the execution at the current levels of debugging

Oracle9i: Program with PL/SQL C-33

Stepping through Code

: = PL{5UL Interpreter BE

FROCEDURE couat_loops +

o000z (v_count TN NUMBIR)

(l}ulutc) Iz

00004 BEGIN

nnnns FOR i in 1..v_roont TLOOP

B (02)=> TEET_IQ.PUT_LINE ('Times through loop: '| ToO CHAR(i1):
oooo7 END LOOF:

0o00s END:

PL/SQL> count looyps (4):

> Entering Breakroiat #2 line 6 of COUNT_LOOPS
‘debug 1) PLSS0OL>

C-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Stepping Through Code
Deter mining the Cause of Error

After the breakpoint is found at run time, you can begin stepping through the code. An arrow (=>)
indicates the next line of code to execute.

1. Click the Step Into button.
2. Asingleline of code is executed. The arrow moves to the next line of code.
3. Repeat step 1 as necessary until the line causing the error is found.

The arrow continues to move forward until the erroneous line of code is found. At that time, PL/SQL
displays an error message.

Oracle9i: Program with PL/SQL C-34

Changing a Value

Oracle Procedure Builder

[]2]
FOURE count_loops

oOCoz [v_count IN NUNEER)

OoCo3 IS

0O0CO4 EBEGIN

Oocos FOR i in 1..v_count LOOP

O (CZ)= TEXT‘_IO.P'_TT:LINE (' Times through loop:
oocov END LOOF;

ooCos END:

[11 Proces| ‘I Fin:l:l

— Program Units
= COUNT_LOOFS [Procedure Body
+ & My_MCGGAGE [Mrocedure Dady)
+ = PU_C29 [Anormwmous Block)

+ Librarics

+ Attached Libraries

+ Built-in Fackages

Debug Actions

= Stack

W [0] Anonyrnous Blozl
[1] Procedure Bo

P |

8 _COUNT (NUMBER) = 4

#* Databas#Abjects

ey

rocedure Body COLMT_| PL/S0L> count_loops (4):

MTESER] - 3

>> Enter-ng Breakpoint #2 line & of COUNT_L2OPS
{debug 1)PL/20L> debug.seti('I',3):

{debug 1)PL/S0L>

(3\

C-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing a Value
Examining Local Variables

Using Procedure Builder, you can examine and modify local variables and parameters in an interrupted
program. Use the Stack node in the Navigator paneto view and change the values of local variables and
parameters associated with the current program unit located in the call stack. When debugging code,
check for the absence of values aswell asincorrect values.

Examining Values and Testing the Possible Solution
1. Click the Stack node in the Object Navigator or Navigator pane to expand it.
2. Clock the value of the variable to edit. For example, sdlect variable 1.
The value 1 becomes an editable field.

3. Enter the new value and click anywhere in the Navigator pane to end the variable editing, for
example, enter 3.

Thefollowing statement is displayed in the Interpreter pane:
(debugl) PL/SQL> debug.seti('Il', 3);
4 Click the Go button to resume execution through the end of the program unit.

Note: Variables and parameters can also be changed by using commands at the Interpreter PL/SQL
prompt.

Oracle9i: Program with PL/SQL C-35

Summary

In this appendix, you should have learned how to:
® Use Procedure Builder:
— Application partitioning
— Built-in editors
— GUI execution environment
®* Describe the components of Procedure Builder
— Object Navigator
— Program Unit Editor
— PL/SQL Interpreter
— Debugger

Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i: Program with PL/SQL C-36

REF Cursors

Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor Variables

® Cursor variables are like C or Pascal pointers,
which hold the memory location (address) of an
item instead of the item itself

* In PL/SQL, a pointer is declared as REF X, where
REF is short for REFERENCE and X stands for a
class of objects

®* A cursor variable has the data type REF CURSOR
®* A cursor is static, but a cursor variable is dynamic
® Cursor variables give you more flexibility

D-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor Variables

Cursor variables arelike C or Pascal pointers, which hold the memory location (address) of someitem
instead of theitem itself. Thus, declaring a cursor variable creates a pointer, not an item. In PL/SQL, a
pointer has the datatype REF X, where REF is short for REFERENCE and X stands for a class of
objects. A cursor variable has datatype REF CURSOR.

Like a cursor, a cursor variable points to the current row in the result set of a multirow query.
However, cursors differ from cursor variables the way constants differ from variables. A cursor is
static, but a cursor variable is dynamic because it is hot tied to a specific query. Y ou can open a cursor
variable for any type-compatible query. This gives you more flexibility.

Cursor variables are available to every PL/SQL client. For example, you can declare a cursor variable
inaPL/SQL host environment such as an OCI or Pro*C program, and then pass it as an input host
variable (bind variable) to PL/SQL. Moreover, application development tools such as Oracle Forms
and Oracle Reports, which have a PL/SQL engine, can use cursor variables entirdy on the client side.
The Oracle server also has a PL/SQL engine. Y ou can pass cursor variables back and forth between an
application and server through remote procedure calls (RPCs).

Oracle9i: Program with PL/SQL D-2

Why Use Cursor Variables?

®* You can use cursor variables to pass query result
sets between PL/SQL stored subprograms and
various clients.

®* PL/SQL can share a pointer to the query work area
in which the result set is stored.

®* You can pass the value of a cursor variable freely
from one scope to another.

®* You can reduce network traffic by having a
PL/SQL block open (or close) several host cursor
variables in a single round trip.

D-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Why Use Cursor Variables?

Y ou use cursor variables to pass query result sets between PL/SQL stored subprograms and various
clients. Neither PL/SQL nor any of its clients owns aresult s&t; they simply share a pointer to the
guery work area in which theresult set is stored. For example, an OCI client, an Oracle Forms
application, and the Oracle server can all refer to the same work area.

A query work area remains accessible as long as any cursor variable pointsto it. Therefore, you can
pass the value of a cursor variable fredy from one scope to another. For example, if you pass a host
cursor variableto a PL/SQL block that is embedded in a Pro*C program, the work area to which the
cursor variable points remains accessible after the block completes.

If you have a PL/SQL engine on the client side, calls from client to server impose no restrictions. For
example, you can declare a cursor variable on the client side, open and fetch from it on the server side,
then continue to fetch from it back on the client side. Also, you can reduce network traffic by having a
PL/SQL block open (or close) several host cursor variables in a single round trip.

A cursor variable holds areference to the cursor work area in the PGA instead of addressing it with a
static name. Because you address this area by areference, you gain the flexibility of a variable.

Oracle9i: Program with PL/SQL D-3

Defining REF CURSCR Types

* Define a REF CURSOR type.

Define a REF CURSOR type
TYPE ref _type name |'S REF CURSOR [RETURN return_type];

* Declare a cursor variable of that type.

ref _cv ref _type nane;

e Example:

DECLARE

TYPE Dept Cur Typ | S REF CURSOR RETURN
depart ment s¥%RONM YPE;

dept _cv Dept Cur Typ;

D-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining REF CURSOR Types

To definea REF CURSOR, you perform two steps. First, you definea REF CURSOR type, and then
you declare cursor variables of that type. Y ou can define REF CURSOR types in any PL/SQL block,
subprogram, or package using the following syntax:

TYPE ref _type _name |'S REF CURSOR [RETURN return_type];

in which:
ref type_nanme isatype specifier used in subsequent declarations of cursor variables
return_type represents arecord or arow in a database table

In the following example, you specify areturn type that represents a row in the database table
DEPARTMENT.

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). As the next example shows, a
strong REF CURSOR type definition specifies a return type, but a weak definition does not:

DECLARE

TYPE EnmpCur Typ | S REF CURSOR RETURN enpl oyees%WROMYPE; -- strong
TYPE GenericCurTyp IS REF CURSOR, -- weak

Oracle9i: Program with PL/SQL D-4

Defining REF CURSOR Types (continued)

Strong REF CURSOR types are less error prone because the PL/SQL compiler |ets you associate a
strongly typed cursor variable only with type-compatible queries. However, weak REF CURSOR
types are more flexible because the compiler lets you associate a weakly typed cursor variable with
any query.

Declaring Cursor Variables

After you definea REF CURSOR type, you can declare cursor variables of that type in any PL/SQL
block or subprogram. In the following example, you declare the cursor variable DEPT_CV:

DECLARE
TYPE Dept Cur Typ | S REF CURSOR RETURN depart nent s “ROWYPE;
dept _cv Dept CurTyp; -- declare cursor variable

Note: You cannot declare cursor variables in a package. Unlike packaged variables, cursor variables
do not have persistent states. Remember, declaring a cursor variable creates a pointer, not an item.
Cursor variables cannot be saved in the database; they follow the usual scoping and instantiation rules.

Inthe RETURN clause of aREF CURSOR type definition, you can use “ROWT YPE to specify a
record type that represents arow returned by a strongly (not weakly) typed cursor variable, as follows:

DECLARE
TYPE TnpCur Typ | S REF CURSOR RETURN enpl oyees%rRONYPE;

tnp_cv TrmpCur Typ; -- declare cursor variable
TYPE EnpCur Typ 1S REF CURSOR RETURN t np_cvyROMYPE;
enp_cv EmpCur Typ; -- declare cursor variable

Likewise, you can use % YPE to provide the datatype of arecord variable, as the following example
shows:

DECLARE
dept _rec departnent s¥ROMYPE;, -- declare record variable
TYPE Dept Cur Typ | S REF CURSOR RETURN dept r ec%l'YPE;
dept _cv Dept CurTyp; -- declare cursor variable
In thefinal example, you specify a user-defined RECORD typein the RETURN clause:
DECLARE
TYPE EnmpRecTyp |I'S RECORD (
enpno NUMBER(4),
enane VARCHAR2(10),
sal NUVBER(7, 2)) ;
TYPE EnmpCur Typ | S REF CURSOR RETURN EnpRecTyp;
enp_cv EmpCur Typ; -- declare cursor variable
Cursor Variables As Parameters

Y ou can declare cursor variables as the formal parameters of functions and procedures. In the
following example, you definethe REF CURSOR type EnmpCur Ty p, and then declare a cursor
variable of that type as the formal parameter of a procedure:

DECLARE
TYPE EnpCur Typ |'S REF CURSOR RETURN enmp%rOM YPE;
PROCEDURE open_enp_cv (enp_cv IN QUT EnpCurTyp) IS ...

Oracle9i: Program with PL/SQL D-5

Using the OPEN- FOR, FETCH, and CLOSE
Statements

* The OPEN- FOR statement associates a cursor
variable with a multirow query, executes the
guery, identifies the result set, and positions the
cursor to point to the first row of the result set.

* The FETCHstatement returns a row from the result
set of a multirow query, assigns the values of
select-list items to corresponding variables or
fields in the | NTOclause, increments the count
kept by RONCOUNT, and advances the cursor to
the next row.

* The CLCSE statement disables a cursor variable.

D-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the OPEN- FOR, FETCH, and CLOSE Statements

Y ou use three statements to process a dynamic multirow query: OPEN- FOR, FETCH, and CLOSE.
First, you OPEN a cursor variable FOR a multirow query. Then, you FETCH rows from the result set
one at atime. When all the rows are processed, you CLOSE the cursor variable.

Opening the Cursor Variable

The OPEN- FOR statement associates a cursor variable with a multirow query, executes the query,
identifies the result set, positions the cursor to point to the first row of the results set, then sets the
rows-processed count kept by “RONCOUNT to zero. Unlike the static form of OPEN- FOR, the
dynamic form has an optional USI NG clause. At run time, bind arguments in the USI NG clause
replace corresponding placeholders in the dynamic SELECT statement. The syntax is:

OPEN {cursor_variable | :host_cursor_variable} FOR dynam c_string
[USI NG bi nd_argunent[, bind argunment]...];

where CURSOR_VARI ABLE isaweakly typed cursor variable (one without a return type),
HOST_CURSOR_VARI ABLE isacursor variable declared in a PL/SQL host environment such as an
OCI program, and dynam ¢_st ri ng isastring expression that represents a multirow query.

Oracle9i: Program with PL/SQL D-6

Using the OPEN- FOR, FETCH, and CLOSE Statements (continued)

In the following example, the syntax declares a cursor variable, and then associates it with a dynamic
SELECT statement that returns rows from the EMPLOYEES table:

DECLARE
TYPE EmpCur Typ |'S REF CURSOR, -- define weak REF CURSCR type
enp_cv EnpCur Typ; -- declare cursor variable

my_enanme VARCHAR2(15);
nmy_sal NUMBER : = 1000;

BEG N
OPEN enp_cv FOR -- open cursor variable
' SELECT | ast _nane, sal ary FROM enpl oyees WHERE sal ary > :s'
USI NG ny_sal ;
END;

Any bind arguments in the query are evaluated only when the cursor variable is opened. Thus, to fetch
rows from the cursor using different bind values, you must reopen the cursor variable with the bind
arguments set to their new values.

Fetching from the Cursor Variable

The FETCH statement returns arow from the result set of a multirow query, assigns the values of
select-list items to corresponding variables or fiddsin the | NTO clause, increments the count kept by
YRONCQOUNT, and advances the cursor to the next row. Use the following syntax:

FETCH {cursor _variable | :host_cursor_vari abl e}
| NTO {define_variable[, define variable]... | record};

Continuing the exampl e, fetch rows from cursor variable EMP_CV into define variables MY _ ENAME
and MY_SAL:

LOOP

FETCH enp_cv I NTO ny_enane, ny_sal; -- fetch next row

EXIT WHEN enp_cv¥NOTFOUND; -- exit |loop when last rowis fetched
-- process row

END LOOP;

For each column value returned by the query associated with the cursor variable, there must bea
corresponding, type-compatible variable or field inthe | NTO clause. You can use a different | NTO
clause on separate fetches with the same cursor variable. Each fetch retrieves another row from the
same result set. If you try to fetch from a closed or never-opened cursor variable, PL/SQL raises the
predefined exception | NVALI D_CURSCR.

Closing the Cursor Variable

The CLOSE statement disables a cursor variable. After that, the associated result set is undefined. Use
the following syntax:

CLCSE {cursor_variable | :host_cursor_vari abl e};
In this example, when the last row is processed, close cursor variable EMP_CV:
LOOP
FETCH enp_cv | NTO ny_enane, ny_sal;
EXIT WHEN enp_cv%NOTFOUND;
-- process row
END LOOP;
CLCSE enp_cv; -- close cursor variable

If you try to close an already-closed or never-opened cursor variable, PL/SQL raises
| NVALI D_CURSOR.

Oracle9i: Program with PL/SQL D-7

An Example of Fetching

DECLARE
TYPE EnpCur Typ |'S REF CURSOR;
enp_cv EnpCur Typ;
enp_rec enpl oyees¥ROMYPE;
sql _stnt VARCHAR2(200) ;

ny_job VARCHAR2(10) := 'ST_CLERK ;
BEG N
sql _stnt :="'SELECT * FROM enpl oyees

WHERE job id = :j';
OPEN enp_cv FOR sqgl _stnt USING ny_j ob;
LOOP
FETCH enp_cv | NTO enp_rec;
EXIT WHEN enp_cv¥%NOTFOUND,
-- process record

END LOOP;
CLOSE enp_cv;
END;
/
D-8 Copyright © Oracle Corporation, 2001. All rights reserved.

An Example of Fetching

The examplein the preceding slide shows that you can fetch rows from the result set of a dynamic
multirow query into arecord. First you must definea REF CURSCR type, EnpCur Typ. Next you
definea cursor variableenp_cv, of thetype Enpcur Typ. Inthe executable section of the PL/SQL
block, the OPEN- FOR statement associates the cursor variable EMP_CV with the multirow query,
sgl _stmt . The FETCH statement returns arow from the result set of a multirow query and assigns
the values of sdect-list itemsto EMP_RECinthel NTO clause. When the last row is processed, close
the cursor variable EMP_CV.

Oracle9i: Program with PL/SQL D-8

Index

A

actual parameter 2-6
anonymous blocks 1-7
application trigger 9-3
aUTHID CURRENT_USE 4-5
B

BEFORE statement trigger 9-14
BEGIN 1-7

benefits 2-26

BFILE 8-12

BFILENAME 8-12

binding 7-5

C

CALL statement 10-7
CLOSE_CONNECTION 7-31
CREATE PROCEDURE 2-5
CREATE ANY DIRECTORY 8-13
D

database trigger 9-3, 10-11
DBA_JOB 7-19
DBA_JOBS_RUNNING 7-19
DBMS_DDL 7-12
DBMS_JOB 7-13
DBMS_JOB.BROKEN 7-18
DBMS_JOB.REMOVE 7-18
DBMS_JOB.RUN 7-18
DBMS_LOB 7-21, 8-12
data dictionary view 4-9, 4-11
data type 3-4
DBMS_OUTPUT 4-16
DBMS_SQL 7-6

DECLARE 1-7
definer's-rights 4-4
DEPTREE 11-8
DIRECTORY 8-10

DROP PROCEDURE 2-25
dynamic SQL 7-4

Oracle9i: Program with PL/SQL Index-3

E

EMPTY_BLOB 8-24
EMPTY_CLOB 8-24
END 1-7
environments 1-13
EXCEPTION 1-7,2-21
EXECUTE 4-3,7-11
external large object 8-8
F

fetch 7-5
FILE_LOCATOR 8-16
file_type 7-27

formal parameter 2-6
forward declaration 6-8
function 3-3, 8-12

H

host variable 2-14

I

IDEPTREE 11-8
IMMEDIATE 7-11
INSTEAD OF 9-22
INSTEAD OF 9-7
internal 8-6
invoke a procedure 2-9
IS_ OPEN 7-26

L

LOB 8-3, 8-5, 8-32
LOB locator 8-5

local dependencies 11-5
locator 8-12

LONG 8-4
LONG-to-LOB 8-17
M

migration 8-17
modularization 1-6
modules 1-6

mutating table 10-8

N

NEW 9-19

Oracle9i: Program with PL/SQL Index-4

@)

object privilege 4-3

OCI 8-10

OLD 9-19

one-time-only procedure 6-10
OPEN_CONNECTION 7-31
Oracle Internet Platform 1-4
overload 6-3

OLD and NEWqualifiers 9-19

[=]

package 4-16, 5-3, 7-22, 8-9, 8-19
package body 5-11

package specification 5-8
parameter mode 2-8, 3-8
Parsing 7-5

persistent state 6-14

PL/SQL block 2-4

PL/SQL construct 1-5
PROCEDURE 2-5, 2-25
procedures and functions within the 7-23
purity level 6-11

R

recompile a PL/SQL object 11-22
remote dependencies 11-12

row trigger 9-18

READ 8-12

REPLACE 2-4

REQUEST 7-29

REQUEST PIECES 7-29
RETURN 3-4

row trigger 9-9

S

schedule batch job 7-13
security mechanism 8-9
SESSION_MAX_OPEN FILE 8-13
SHOW ERROR 4-11

Oracle9i: Program with PL/SQL Index-5

signature 11-13

SQL*Plus 1-4

statement trigger 9-9, 9-14
SUBMIT 7-15

submit PL/SQL program 7-13
subprogram 1-6

system event 10-3

system privileges 4-3

T

temporary 8-32

time stamp 11-13, 11-20
TO_BLOB 8-18

TO_CLOB 8-18

trigger action 9-10

trigger name 9-13

trigger timing 9-6

trigger type 9-6

triggering event 9-8

u

user-defined PL/SQL function 3-13
USER_DEPENDENCIES 11-7
USER_ERRORS 4-11
USER_JOBS 7-19
USER_OBJECTS 4-7
USER_SOURCE 4-9
USER_TRIGGER 10-28
UTL_FILE 7-21
UTL_FILE DIR 7-22
UTL_HTTP 7-29

UTL_TCP 7-31

Oracle9i: Program with PL/SQL Index-6

